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Abstract
Background  Rare-earth sulfide nanoparticles (NPs) could harness the optical and magnetic features of rare-earth 
ions for applications in nanotechnology. However, reports of their synthesis are scarce and typically require high 
temperatures and long synthesis times.

Results  Here we present a biosynthesis of terbium sulfide (TbS) NPs using microorganisms, identifying conditions 
that allow Escherichia coli to extracellularly produce TbS NPs in aqueous media at 37 °C by controlling cellular sulfur 
metabolism to produce a high concentration of sulfide ions. Electron microscopy revealed ultrasmall spherical NPs 
with a mean diameter of 4.1 ± 1.3 nm. Electron diffraction indicated a high degree of crystallinity, while elemental 
mapping confirmed colocalization of terbium and sulfur. The NPs exhibit characteristic absorbance and luminescence 
of terbium, with downshifting quantum yield (QY) reaching 28.3% and an emission lifetime of ~ 2 ms.

Conclusions  This high QY and long emission lifetime is unusual in a neat rare-earth compound; it is typically 
associated with rare-earth ions doped into another crystalline lattice to avoid non-radiative cross relaxation. This 
suggests a reduced role of nonradiative processes in these terbium-based NPs. This is, to our knowledge, the first 
report revealing the advantage of biosynthesis over chemical synthesis for Rare Earth Element (REE) based NPs, 
opening routes to new REE-based nanocrystals.
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Introduction
Lanthanide (Ln3+)-based NPs are employed in numer-
ous technologies including radar, computer screens, 
drug-delivery systems, and high penetration bioimag-
ing [1–3]. Many of these applications are based on their 
photoluminescence. Lanthanides with the most efficient 
downshifting visible luminescence include trivalent ter-
bium, europium (Eu), and samarium (Sm) ions [4]. Their 
temporal and spectral properties (long lifetime, sharp 
emission bands, and large Stokes shifts) make them par-
ticularly useful in time-resolved luminescence bioassays. 
Their emission is easily distinguished from autofluores-
cence based on its much longer lifetime [5]. Although Tb 
is one of the most luminescent lanthanides, reports of 
synthesis of Tb-based NPs are rare.

NPs are commonly made through chemical synthe-
sis, but the large solvent volumes and high temperatures 
needed for this approach often limit large scale applica-
tion. Thus, green and more sustainable processes to syn-
thesize Tb-containing NPs using biological systems at 
low temperature without toxic reagents or solvents are 
needed. A few methods to produce Tb-containing NPs 
have been reported, mostly based on chemical synthesis 
[6–8].

Metal sulfide NPs (MeS NPs) are used in applica-
tions such as antibacterial agents, imaging and diag-
nostics, photo- and chemotherapy, pharmacology, and 
the manufacture of biosensors [9]. Many Me-S NPs are 
biocompatible and exhibit physicochemical properties 
that are useful for biological applications [10]. Chitosan-
capped TbS (CS-Tb2S3) NPs produced using a bottom-up 
chemical method were recently reported [6]. Chemical 
synthesis of REE-doped NPs of metal sulfides including 
CdS, ZnS, and PbS has been reported in several studies 
[11–15]. These REE-doped NPs form a new class of lumi-
nescent materials with narrow emission lines, a large sep-
aration between the excitation and emission wavelengths, 
and a long emission lifetime [16]. Thus, sulfide lattices 
have potential to be good hosts for Tb.

Studies of the interaction of REEs with cells or biomol-
ecules have, to date, been limited. Some specific enzymes 
that interact and bind Ln3+ ions have been described. In 
this context, the identification, molecular structure, and 
nucleotide sequence of a Ce3+-induced methanol dehy-
drogenase (MDH) from Bradyrhizobium sp [17] and 
the induction of MDH activity by La3+ ions on proteins 
exhibiting MDH activity in Methylobacterium radiotoler-
ans [18] were reported. Later, the MDH gene homologue, 
xoxF1, was shown to be upregulated in response to La3+ 
exposure in Methylobacterium extorquens [19]. A highly 
selective Ln3+-binding protein called lanmodulin (LanM) 
was identified in M. extorquens [20]. Despite these prior 
reports, the biological relevance of lanthanides remains 

unknown, and studies of their interactions with cells are 
needed.

Tb compounds are considered to be of low to moder-
ate toxicity, but only a few reports about Tb interaction 
with biological systems have been published [21–23]. The 
minimal inhibitory concentrations of different Tb com-
pounds against pathogenic bacteria have been described, 
with Pseudomonas aeruginosa, Escherichia coli, and 
Staphylococcus aureus showing MICs over 1 mM [24]. 
Tb biosorption and selectivity by a genetically modified 
E. coli strain expressing lanthanide binding tags on the 
cell surface has been reported [25, 26]. Just one study 
reporting the biological synthesis of Tb2O3 NPs, by incu-
bating Tb4O7 with Fusarium oxysporum biomass has 
been published. F. oxysporum produces compounds with 
a very high reduction potential, which can reduce Tb4O7 
in aqueous media, yielding Tb2O3 NPs with a 10 nm size 
[27].

To better characterize Tb-bacteria interactions, here 
we studied the effect of terbium on the growth and 
viability of E. coli. Based on this, we developed a green, 
simple, and non-toxic approach for the biosynthesis of 
small (< 10  nm), downshifting luminescent terbium sul-
fide (TbS) NPs. By developing a biosynthesis method for 
TbS, this study provides (i) a methodology shift to more 
sustainable REE-nanoparticle production in contrast to 
current chemical approaches and ii) greater insight into 
REE-bacteria interactions.

Materials and methods
L-cysteine ≥ 98%, tryptone grade 200, yeast extract, glu-
cose ≥ 99.5%, casaminoacids OmniPur® Grade, sodium 
chloride ≥ 99.0%, sodium pyruvate ≥ 99%, potassium sul-
fate ≥ 99.0% and magnesium sulfide ≥ 99.0% for cell cul-
ture media as well as terbium nitrate pentahydrate 99.9% 
trace metals basis were obtained from Sigma-Aldrich. 
Terbium nitrate stock solutions were filtered through 
0.22-µm filters, and bacterial cell culture reagents were 
autoclaved prior to use.

Bacterial growth curves
E. coli BL21(DE3) cells were grown in LB or R2A media 
supplemented with different concentrations of terbium 
nitrate (Tb(NO3)3) at 37  °C with constant shaking (180 
RPM). Bacterial growth was determined by measuring 
OD600nm using a multimode microplate reader Synergy 
H1 (Biotek). The same bacterial strain was used for all 
experiments.

Cellular viability assays
E. coli was grown in LB or R2A media at 37 °C with con-
stant agitation until OD600nm = 0.6 was reached. At this 
point, cellular viability was evaluated in cells exposed 
to different concentrations of terbium nitrate and in 
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cultures exposed to conditions for NP biosynthesis (cys-
teine and terbium nitrate supplementation). In the first 
case, the culture was divided into several tubes with the 
desired concentration of terbium nitrate (1, 3, 5 or 10 
mM). Then, an aliquot was taken to measure the colony 
forming units (CFUs) after 0 and 24 h of exposure. In the 
second case, when the culture reached an OD600nm = 0.6, 
the bacterial cells were washed with deionized water and 
resuspended in one volume of borax-citrate buffer (di-
sodium tetraborate 15 mM and trisodium citrate 15 mM, 
pH 9.4). The suspension was then supplemented with 1 
mM cysteine and left at room temperature for 1 h with-
out shaking. After this time, the culture was challenged 
with terbium nitrate 1, 3, or 10 mM and incubated at 37° 
C with continuous shaking. Aliquots were taken at 0 and 
24 h to determine CFUs.

Sulfide detection in culture headspaces
Sulfide production by bacterial cells was determined 
following a previously described protocol [28]. Briefly, 
a sterile paper soaked in lead acetate (100 mM) was 
attached under the cap of tubes used for bacterial 
growth. Bacterial cultures were grown to OD600nm = 0.6 
in LB medium supplemented with cysteine (1 mM) and 
different concentrations of terbium nitrate (1, 3, and 10 
mM) and then incubated for 30, 60, and 120 min at 37 °C. 
Sulfide (S2-) production was visualized by the change 
in the color of the papers obtained for each condition 
and quantified using the Fiji-ImageJ software (http://
imagej.nih.gov/ij/) based upon a grayscale calibration as 
described previously [29].

Auto-metallography assay
The biosynthesis of metal sulfide nanomaterials was eval-
uated by using an auto-metallography assay previously 
reported to detect lithium, gold, and zinc sulfide nano-
materials [29–31]. A Silver Enhancer kit (Sigma-Aldrich, 
SE-100) was used in the experiments. Purified TbS 
nanoparticles were exposed to the silver enhancer mixed 
solution for 10 min and centrifuged to remove the silver 
enhancing solution. Then, a sodium thiosulfate solution 
was added for 3 min, and the sample was observed using 
a microscope.

Biosynthesis of TbS NPs
E. coli was grown with agitation at 37 °C in fresh liquid LB 
media until the exponential phase was reached. This was 
determined through optical density measured at 600 nm 
(OD600nm ~ 0.6). The cells were centrifuged, and the 
supernatant was discarded. The cell pellet was washed 
and resuspended in one volume of borax-citrate buffer 
(di-sodium tetraborate 15 mM and trisodium citrate 15 
mM, pH 9.4) to obtain an OD600nm = 0.6. The suspension 
was supplemented with L-cysteine 1 mM and held at 

room temperature for one hour to favor the production 
of hydrogen sulfide. Afterwards, 10 mM Tb(NO3)3·5 H2O 
was added to the solution, and the culture was incubated 
with agitation at 37  °C for one hour. During this time, 
the solution changed from transparent to a pale green-
ish color, indicating the formation of nanoparticles. Tb 
nitrate was first dissolved in water to generate a concen-
trated stock and then the appropriate volume was added 
to reach the mentioned final concentration.

To purify the NPs, the culture was centrifuged at 
7.000 RPM twice, and the cell pellet was discarded. The 
supernatant was then filtered using a 0.22 μm filter. The 
NPs (from the solution passing through the filter) were 
washed with distilled water and concentrated using a 
0.3  kDa MilliporeSigma™ Amicon™ Filter tube. Finally, 
the NPs were purified using a thiol Sepharose 4B affinity 
column. The logic behind the use of a thiol-sepharose 4B 
affinity column to purify the NPs was that if terbium sul-
fide NPs are being formed, then the sulfur groups present 
in the NPs should bind to the column. This solution with 
purified NPs was used for further characterization.

Characterization of biosynthesized TbS NPs
The emission spectra of purified NPs were measured 
under 350  nm excitation and recorded in the range of 
390–800  nm, using a Synergy™ H1 multi-plate reader 
(BioTek Instrument Inc.). HR-TEM images of the NPs 
were obtained utilizing a JEOL JEM 2010 microscope and 
a Thermo Scientific Talos 200X microscope. This equip-
ment provided bright and dark field morphology images 
and the corresponding SAED patterns. The samples 
were dispersed through bath sonication (15  min) and 
then deposited onto a carbon coated copper grid before 
microscope observation. The shape, size, and interpla-
nar distance of the NPs were determined by processing 
HR-TEM micrographs with the software Fiji [32]. SAED 
ring patterns were further analyzed using the EDP2XRD 
software to convert them to equivalent X-ray diffraction 
(XRD) patterns [33]. The elemental mapping of the NPs 
was carried out with a Thermo Scientific Talos 200X elec-
tronic microscope equipped with four in-column SDD 
Super-X detectors for Energy Dispersive X-ray Spectros-
copy (EDS) signal detection and chemical characteriza-
tion with compositional mapping.

Fluorescence lifetime measurements
An MT5365-UV LED (Mouser Electronics, Inc., Man-
sfield, TX) 3.6mW@370nm connected to a LEDD1B 
power supply (ThorLabs, Inc.,Newton, NJ) was used to 
excite the TbS powder. Pulsed operation of the LED was 
triggered by a PM5712 pulse generator (Philips, Amster-
dam, Netherlands). Emission relaxation was detected by 
an H6780-20 PMT from Hamamatsu Photonics (Japan) 
connected to a TDS5104B oscilloscope from Tektronix, 
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Inc. (Beaverton, OR). To distinguish excitation light and 
other background from green TbS emission, a bandpass 
optical filter, D560/40 from Chroma Technology Corpo-
ration (Bellows Falls, VT), was attached at the input win-
dow of the PMT.

Downshifting QY measurements
Absolute quantum yield values were obtained with a 
Horiba Fluorolog-QM spectrofluorometer equipped 
with a QuantaPhi-2 integrating sphere attachment. Spec-
tralon® powder holder cups with quartz covers were used 
for the samples. An excitation wavelength of 379  nm 
was chosen based on the excitation spectra of TbS NPs 
powder. For emission peaks integration, the area of a 
given spectrum between 470 and 640 nm was chosen to 
include the characteristic Tb emission lines at 490, 546, 
586, and 622  nm, thus, allowing calculation of the total 
downshifting quantum yield.

MTT cell viability assay
Human dermal fibroblasts isolated as described previ-
ously were seeded at 8,000 cells/well in 96-well tissue 
culture treated plates [34]. On the next day, cells were 
exposed to the indicated concentrations of TbS NPs or 
Tb(NO3)3. After 24  h, cells were replenished with fresh 
medium containing 10  mg/mL 3-(4,5-dimethylthiazol-
2-yl)-2,5,-diphenyltetrazolium bromide (MTT). After 
4–5  h, the medium was removed, and the cells were 
incubated in 10% (w/v) SDS at 37  °C overnight. Optical 
density (OD570-650 nm) was determined by using a Synergy 
4 hybrid multi-mode microplate reader (Agilent, Santa 
Clara, CA). In separate assays (again after 24  h of cell 
culture).

Live/dead cell assay
Human dermal fibroblasts isolated as described pre-
viously were seeded at 8,000 cell/well in 96-well tis-
sue culture treated plates [34]. On the next day, cells 
were exposed to the indicated concentrations of TbS 
or Tb(NO3)3. After 24  h, live/dead cells were deter-
mined using the LIVE/DEAD™ Viability/Cytotoxicity kit 
(Thermo Fisher Scientific) as per the manufacturer’s pro-
tocol. Images of stained cells (live cells = green, calcein 
AM; dead cells = red, ethidium homodimer-1) and phase 
images were acquired using an Observer Z1 microscope 
(Carl Zeiss Inc, Thornwood, NY) equipped with a high-
definition digital camera (ORCA-ER C4742-80, Hama-
mastu, Bridgewater, NJ).

Results
Analysis of Tb3+ effect upon E. Coli growth
We tested the effect of terbium nitrate on the growth of 
E. coli cells to determine a suitable range of metal con-
centrations for biosynthesis of Tb-containing NPs. This 

was evaluated in Luria Broth (LB) and Reasoner’s 2  A 
agar (R2A) media. E. coli BL21(DE3) cultures were grown 
in the presence of increasing concentrations of terbium 
(0.005–10 mM) to assess the effect of the metal on bac-
terial growth curves. As shown in Supplementary Fig-
ure S1, increased concentrations of terbium affected the 
growth curves in both culture media, totally suppressing 
bacterial growth at concentrations of 4 mM in LB media 
and 1 mM in R2A media. Terbium nitrate growth MICs 
of 3.5 and 0.5 mM were determined for E. coli cells grown 
in LB and R2A media, respectively (Figure S1).

Analysis of Tb3+ effect upon E. Coli viability
Most methods to biosynthesize metal NPs expose bac-
terial cultures to the metal precursors during the expo-
nential growth phase, a condition in which the culture 
contains a high concentration of bacterial cells (107 – 108 
cells/mL) that are metabolically active before metal pre-
cursors are added. Thus, the effect of terbium nitrate on 
the viability of exponential cultures of E. coli cells grown 
in LB and R2A media was evaluated at the MIC values. 
This assay evaluated the toxicity of Tb upon bacteria that 
were grown to OD600nm = 0.6 prior to Tb addition. For 
cells grown in LB media, CFUs increased by an order of 
magnitude in 4 h in the control condition (no Tb added). 
The same increase was observed upon exposure to 1- 
and 3-mM terbium nitrate. However, cells exposed to 5 
mM terbium nitrate retained only 5.8% cellular viability 
after 30  min. Total absence of viability was determined 
when the cells were exposed to 10 mM terbium nitrate 
(Figure S2A). In R2A media, a total loss of cell viability 
after 30 min was observed in cells exposed to 3-, 5-, and 
10-mM terbium nitrate (p < 0.0001). An 84.3% decrease 
in cell viability was observed after 4 h exposure to 1 mM 
terbium nitrate (Figure S2B). In general, cellular growth 
and viability of E. coli cells are less affected by Tb3+ in LB 
media than in R2A media.

Biosynthesis of TbS NPs
Effect of cysteine exposure prior to tb supplementation upon 
E. Coli viability
Our biosynthesis protocol takes advantage of the ability 
of some microorganisms to produce high concentrations 
of reactive sulfides from cysteine while suspended in 
borax citrate buffer [29, 35, 36]. Thus, to select the ideal 
conditions for TbS NP biosynthesis, we evaluated the 
effect of cysteine supplementation (1 mM) on the cellular 
viability of E. coli in the presence of different concentra-
tions of terbium nitrate (1, 3, and 10 mM). After cysteine 
supplementation, the cellular viability of cells exposed to 
1, 3, and 10 mM of Tb decreased by 1 to 2 orders of mag-
nitude relative to the Tb-free control over a 1  h period 
(Supplementary Figure S3). Cysteine treatment enhanced 
the tolerance of cells to terbium at all concentrations 
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evaluated. This effect is most evident in cells exposed to 
10 mM of Tb, a concentration that in the absence of cys-
teine produced a total loss of viability (Supplementary 
Figure S2A).

The effect of cysteine on sulfide production was con-
firmed by assaying the production of S2- in the headspace 
of E. coli cultures. In this assay, lead present in the filter 
paper reacts with the sulfide in the headspace to darken 
the paper. All cultures exposed to cysteine presented 
a darker coloration compared to the control, confirm-
ing the generation of sulfide as previously reported [37]. 
Cultures exposed to terbium produced lower levels of 
sulfide than the Tb-free control, a result that is most evi-
dent after 30 min incubation (Figure S4). The exposure to 
10 mM terbium clearly decreases the amount of sulfide 
present in the headspace of cultures (Figure S4B).

Evaluation of different concentrations of the REE NP 
precursor
We evaluated the emission of filtered, concentrated, and 
purified nanostructures (see methods) under 350  nm 
excitation using different concentrations of terbium 
nitrate. As shown in Supplementary Figure S5, the puri-
fied NPs exhibit the characteristic emission peaks of 
terbium. More details are given in the characterization 
section below.

Confirmation of metal sulfide nanostructures formation
Next, we confirmed the presence of sulfur in the NPs 
using an auto-metallography assay that detects the 
presence of chalcogenides in a sample by their reac-
tion with silver (Supplementary Figure S6). Dark spots 
were observed in the samples with NPs, and the darken-
ing increased in samples obtained from cells exposed to 
higher concentrations of terbium nitrate and cysteine. 
This result was also observed in positive controls contain-
ing CdTe and CdS nanoparticles but was not observed 
when only Tb was supplied (Supplementary Figure S7).

Characterization of biosynthesized TbS NPs
Spectroscopic characterization
A relevant feature of Tb3+ based nanomaterials is their 
interesting optical properties characterized by emission 
peaks associated with multiple 5D→7F transitions. Based 
on this, the emission spectra of purified TbS NPs pro-
duced by E. coli cells exposed to 10 mM terbium nitrate 
and 1 mM cysteine were evaluated. As shown in Fig. 1, 
the Tb characteristic emission peaks at 490 nm, 546 nm, 
586  nm, and 622  nm under excitation at 350  nm were 
observed [38–40]. Measurements were performed and 
calculated for emission lines at 490 nm, 546 nm, 586 nm, 
and 622  nm. The total downshifting QY calculated was 
28.3%.

A particular property of REE based nanomaterials is 
their long emission lifetime, a characteristic that is the 
basis for many of their applications. We evaluated the 
emission lifetime of the biosynthesized TbS NPs to be ~ 2 
ms (Fig.  1C). We also evaluated the change in emission 
lifetime for NPs biosynthesized using different concen-
trations of the metal precursor. A slight increase in emis-
sion lifetime was observed for the NPs produced at lower 
Tb nitrate concentrations (Figure S8).

Morphology of the NPs
The size and shape of purified NPs produced by E. coli 
were determined by electron microscopy. TEM imaging 
showed that TbS NPs have a spherical shape with sizes 
below 10 nm (Fig. 2). A size histogram was constructed 
by analyzing 500 nanoparticles, yielding a mean size of 
4.1 +/- 1.3 nm and a size distribution ranging from 2 to 
10 nm (Fig. 2B).

Crystallinity of the NPs
HR-TEM and SAED were used to analyze the structure 
and crystallinity of the NPs. An interplanar distance 
of 0.3  nm was observed in the HR-TEM micrographs 
(Fig.  2D and E). In addition, a high-resolution micro-
graph was analyzed revealing that the sample is loaded 
with nanoparticles, and they are all crystalline (Figure 
S9). The obtained EDP patterns were transformed into an 
XRD pattern using a software for better analysis (Figure 
S10, Table S2, Figure S11 and Table S3).

Elemental analysis of the NPs
The elemental composition and distribution of the NPs 
was evaluated through EDS analysis. STEM-EDS elemen-
tal mapping of purified NPs confirmed that S and Tb are 
co-located in the TbS NPs (Fig. 2G and H). EDS quanti-
fication (Supplementary Table S4) showed a Tb to S ratio 
of 1.91, but this includes not only the NPs themselves, 
but the biomass in which they were embedded.

Cytotoxicity of TbS NPs
Finally, we evaluated the cytotoxicity of the NPs toward 
human fibroblasts as a representative human cell type. 
For comparison, cytotoxicity of the precursor, terbium 
nitrate, was also evaluated. Using the conventional MTT 
assay, we observed that when exposed to 0.625  mg/mL 
terbium nitrate, cell viability decreased by about 20% 
relative to control cells that were not exposed to the pre-
cursor. Increasing concentrations of Tb nitrate further 
reduced cell viability, resulting in almost no viable cells at 
concentrations ≥ 10 mg/mL. In contrast, exposure to TbS 
NPs revealed lower cytotoxicity than Tb nitrate (Supple-
mentary Figure S12). At 0.625 mg/mL TbS NPs, cell via-
bility was similar to cells not exposed to nanoparticles. At 
concentrations from 1.25 to 20 mg/mL TbS, cell viability 
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decreased by 30–40%. At the highest TbS concentration 
used (40 mg/mL), cell viability was less than 20% (Supple-
mentary Figure S12).

A live/dead cell assay showed that after exposure to dif-
ferent concentrations of terbium nitrate (Supplementary 
Figure S13), Similar numbers of cells remained on the 
surface of the wells (phase contrast), while an increasing 
fraction of dead cells (stained red) was observed start-
ing at a concentration of 5  mg/mL. In agreement with 
the MTT assay, at concentrations ≥ 10  mg/mL terbium 
nitrate, there were only dead cells but no live cells. In 
contrast, increasing concentrations of TbS NPs (Supple-
mentary Figure S14) resulted in decreasing cell number 
(phase image), but most cells remained viable (green).

Discussion
Terbium was chosen among the lanthanides due to 
its excellent fluorescent and magnetic properties and 
because it is one of the most used and studied lan-
thanides in the manufacturing of NPs [41, 42]. Therefore, 
the aim of this study was to develop a green method for 
the biosynthesis of TbS nanoparticles using E. coli as a 
biofactory.

We assessed the tolerance of E. coli to terbium nitrate 
and determined a minimum inhibitory concentration 
(MIC) of 3.5 mM in LB media (Figure S1). This value 
indicates that Tb3+ is less toxic to E. coli cells compared 
to Cd2+, Zn2+, and Pb2+ (MICs of 1, 2, and 1.25 mM, 
respectively) [43–46].

Fig. 1  Excitation and emission spectra, and emission lifetime measurement of freeze-dried purified TbS NPs produced by E. coli. (A) excitation spectrum 
measured at an emission wavelength of 546 nm, (B) emission spectrum measured at an excitation wavelength of 379 nm, and (C) emission decay mea-
surement at an excitation wavelength of 350 nm. The black line shows a single-exponential fit with a lifetime of 1.91 ms
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The accumulation of REEs by different Gram-positive 
bacteria has been studied, but the effect on growth or 
viability has not been evaluated [47]. The MIC of ter-
bium nitrate for E. coli has been previously reported to 
be above 1 mM which is consistent with the MIC values 
determined in our study on LB (3.5 mM) and R2A (0.5 
mM) media (Figure S1) [24]. Our results further revealed 
that the presence of Tb resulted in a 100% decrease in 

viability in E. coli cells exposed for 30 min to 10 or 3 mM 
terbium nitrate in LB and R2A media, respectively (Fig-
ure S2A and Figure S2B, respectively).

In general, cellular growth and viability of E. coli cells 
are less affected by Tb3+ in LB media than in R2A media, 
probably due to the higher concentration of biomolecules 
like proteins and vitamins present in LB media that can 
arrest heavy metals [48–50]. Another explanation could 

Fig. 2  Transmission electron microscopy characterization of purified TbS NPs produced by E. coli. (A) TEM micrograph of purified TbS NPs. (B) Size fre-
quency distribution of purified NPs. (C, D, E) High resolution TEM micrographs of the biosynthesized TbS NPs. The inset in Figure E shows the selected 
area electron diffraction pattern obtained in the TEM. (E) STEM-HAADF image and the corresponding EDS elemental maps showing (G) sulfur and (H) 
terbium localization
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be related to differential solubility of the REE in the two 
media [51–53]. In general, Tb toxicity on microbial cells 
has been attributed in part to the oxidation of unsatu-
rated fatty acids in membrane lipids, changes in mem-
brane proteins, and a decrease in membrane fluidity [21]. 
Exposure to Tb may induce DNA damage and abnormali-
ties in the ammonia metabolism of cnidarians [54]. Addi-
tionally, protein-protein network analysis has shown that 
lanthanides may disrupt biosynthetic pathways involved 
in calcium-regulated processes by enzyme inhibition in 
Saccharomyces cerevisiae [55]. However, the toxic effects 
of REEs on bacteria have been scarcely studied to date. 
Thus, our results add to the limited knowledge regarding 
the interaction of Tb with bacterial cells.

Our results indicated a significant decrease in toxic-
ity of terbium in cells treated with cysteine (Figure S3). 
Also, sulfide concentration in the headspace of cultures 
decreases in cells exposed to Tb (Figure S4). Additionally, 
the autometallography assay results detected the forma-
tion of metal sulfide structures on the purified NPs pro-
duced by E. coli in the presence of Tb(NO3)3 (Figure S6). 
This assay has been previously reported as a good detec-
tion method for metal-sulfide NPs [29–31]. Moreover, 
high-resolution transmission electron microscopy (HR-
TEM) confirmed the formation of nanoparticles. These 
observations imply that sulfide interacts with Tb³⁺ to 
form TbS nanoparticles.

Metallic NPs biosynthesis has been reported to reduce 
the toxicity of metals in cells [56–58]. Maleke and col-
leagues reported the biomineralization and bioaccumu-
lation of europium by a thermophilic metal-resistant 
bacterium [59]. Fischer and colleagues showed that Ana-
baena spec., a multicellular cyanobacterium, accumulates 
and incorporates Europium particles [60]. Considering 
all this, we propose that the overproduction of hydrogen 
sulfide by the modulation of the bacterial sulfur metabo-
lism leads to the formation of extracellular TbS nanopar-
ticles that spatially confine the terbium ions in NPs. Thus, 
Tb ions are no longer available to interact with the cell, 
and NP formation serves as a bacterial lanthanide detoxi-
fication mechanism.

Note that this biosynthesis method would involve the 
bacterial enzyme L-cysteine desulfhydrase to produce 
high amounts of hydrogen sulfide which then reacts with 
terbium nitrate to form TbS NPs. Other groups, includ-
ing ours, have exploited the activity of this enzyme to 
produce metal-sulfide nanoparticles [35, 61, 62]. Addi-
tionally, the metal sequestration and tolerance mecha-
nisms involving cysteine and cysteine-rich biomolecules 
that enhance the biosynthesis of NPs have been reported 
[63, 64].

The NPs produced by E. coli were purified and charac-
terized. A fluorescence emission spectrum correspond-
ing to Tb-based NPs, with narrow peaks at 488  nm, 

545 nm, 585 nm, and 620 nm after excitation at 350 nm, 
was determined (Fig.  1B) [38–40]. These emission 
peaks correspond to the energetic transitions: 5D4→7F6 
(490 nm emission); 5D4→7F5 (546 nm emission); 5D4→7F4 
(586 nm emission) and 5D4→7F3 (622 nm emission). The 
total QY calculated was 28.3%, which is relatively high 
for pure REE NPs. Additionally, considering the rapid 
development and importance of time-gated fluorescence 
applications, we evaluated the fluorescence lifetime of 
the NPs. We report here a fluorescence lifetime of ~ 2 
ms (Fig. 1C). It’s important to note that the tuning of this 
property is fundamental for last-generation fluorescence 
applications, especially in bioimaging where the autofluo-
rescence of the samples reduces immensely the resolu-
tion of the technique and time-gating imaging resolves 
this problem. Also, different lifetimes can be measured as 
distinct signals, thus enabling the possibility of generat-
ing multiple biolabels. Also, a slight increase in emission 
lifetime was observed for the NPs produced at lower Tb 
nitrate concentrations (Supplementary Figure S8). The 
change in emission lifetime might be related to changes 
in ligands bound to the NP, which could be explained by 
a difference in the biomolecules in the organic matrix 
where the NPs are embedded [38]. This emission lifetime 
is long enough to perform time-gated imaging and simi-
lar techniques [65, 66].

To the best of our knowledge, our method produces 
the smallest TbS NPs reported to date (Fig.  2B). Also, 
ultrasmall NPs below 6  nm have been reported to effi-
ciently pass through the pores of the glomerulus in the 
kidneys, being rapidly eliminated from the circulatory 
system via the bladder and urine, which is desirable in 
biomedical applications to avoid any long-term side 
effects. Ultrasmall NPs also have specific pharmacoki-
netic properties and good tissue penetration. Moreover, 
surface modifications would greatly change their proper-
ties, in contrast with larger NPs that are less affected by 
their surface characteristics [67].

The electron diffraction patterns obtained through 
SAED match multiple known terbium sulfide crystal 
phases but are not consistent with terbium oxides or oxy-
sulfides (Inset in Fig.  2E, Figure S10, Figure S11, Table 
S1, Table S2 and Table S3) [33]. Thus, we conclude that 
the nanoparticles comprise one or more crystalline ter-
bium sulfide phases, but the multiple 2-θ angle peaks 
that are common for multiple terbium sulfides preclude 
us from confidently identifying which exact crystalline 
phase(s) are present. To date, XRD analysis and Raman 
analysis has also been inconclusive as the highest peaks 
are masked by the background signal from biomolecules 
(data not shown). Also, it is worth mentioning that it’s 
possible that some of the product is amorphous, which 
complicates the crystal characterization.
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EDS analysis confirmed the co-location of Tb and 
S, with a Tb to S ratio of 1.91 (Fig. 2G and H and Table 
S4). We thoroughly washed the nanoparticles to remove 
any remaining free cysteine from the media and further 
purified them using a thiol-sepharose column. However, 
it’s possible that some cysteine may still be bound to the 
biomass.

Furthermore, the high mass percentages of C, N, 
O, and Na detected, along with dynamic light scatter-
ing (DLS) measurements showing a hydrodynamic size 
of approximately 10  nm—which is larger than the size 
observed via TEM—strongly suggest that the nanopar-
ticles are embedded in an organic matrix, as has been 
previously reported for the biosynthesis of metal sulfide 
nanoparticles by microorganisms [68]. In conclusion, our 
results confirmed that E. coli is biosynthesizing crystal-
line TbS NPs.

To evaluate the cytotoxicity of the NPs, live/dead cell 
and MTT assays were performed (Figure S12). Increas-
ing concentrations of Tb nitrate further reduced cell 
viability, resulting in almost no viable cells at concen-
trations ≥ 10  mg/mL. In contrast, exposure to TbS NPs 
revealed lower cytotoxicity than Tb nitrate (Supplemen-
tary Figure S12). In live/dead cell assays, no dead cells 
were visible after exposure to TbS NPs, whereas expo-
sure to 10  mg/mL of terbium nitrate resulted in only 
dead cells being observed (Figure S14). These data sug-
gest that Tb nitrate and TbS NPs affect cell viability via 
different mechanisms. That is, one might infer that the 
TbS NPs inactivated the metabolism of the cells, with-
out disrupting the membrane, such that the dye cannot 
enter the cells, which therefore show no red fluorescence 
[69, 70]. Other reports showed similar results, where the 
lanthanide NPs are remarkably less toxic than the corre-
sponding soluble Ln salts [71, 72]. Further investigation 
is required to determine how the NPs and the Ln salts 
affect viability and cell growth. Additionally, some dis-
crepancies have been observed in these types of assays, 
where the NPs negatively affect the proliferation rate of 
one cell line and affect positively another cell line [73].

The development of the first biological method to pro-
duce TbS NPs and the characterization of the nanostruc-
tures produced provides a solid foundation to improve 
their properties in future research and to generalize the 
synthesis to other rare-earth sulfides. The NPs could 
also be functionalized with chelating ligands that pho-
tosensitize the NPs. This phenomenon is known as the 
antenna effect, where the ligand transfers its energy to 
the nanoparticle, resulting in increased emission from 
the lanthanide (38). This approach could involve func-
tionalizing the nanoparticles with a bithiol ligand such 
as 1,2-Ethanedithiol (EDT) or a disulfide ligand like 
dithiobis(succinimidyl propionate) (DSP), conjugated 
to a light-absorbing molecule. This ligand would exhibit 

a strong affinity for the thiol groups present on the TbS 
nanoparticles, which were also utilized in the purification 
process using thiol-Sepharose 4B columns. Subsequently, 
another functional group would remain available for the 
attachment of a photosensitizer.

Conclusions
This study represents a significant advance in the nascent 
field of REE-based NP biosynthesis. The chemical synthe-
sis of specific REE-based nanoparticles has been studied 
extensively, e.g., in the case of REE-doped fluoride phases. 
However, few reports on the synthesis of REE sulfides are 
available. Most methods employed to synthesize lantha-
nide sulfide and oxysulfide NPs use temperatures above 
100 °C for extended times and there is no general method 
to control the size of the lanthanide sulfide NPs [76,77]. 
From this perspective, the novel method to biosynthe-
size ultrasmall terbium sulfide NPs we report here could 
have substantial impact. Moreover, several biosynthesis 
parameters, including precursor concentration, solution 
pH, temperature, and time of synthesis, remain available 
to tune the size, shape, and optical properties of the NPs. 
In summary, the results presented demonstrate that the 
biosynthesis method reported in this work allows E. coli 
to produce TbS NPs with spherical shape, average size 
below 5 nm, a size that has not been achieved by chemi-
cal methods, and interesting spectroscopic properties 
including a high emission quantum yield of 28.3% and an 
emission lifetime of ~ 2 ms, associated with the presence 
of Tb in the core of the NPs.
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