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Abstract 

Background  Dopamine is a promising organic compound with several key applications in emergency medicine, diagnosis 
and treatment of cancer, production of lithium anodes, and wastewater treatment. Since studies on in vivo dopamine pro-
duction are limited, this study demonstrates the development and optimisation of a dopamine production strain by the help 
of the knowledge driven design-build-test-learn (DBTL) cycle for rational strain engineering.

Results  The knowledge driven DBTL cycle, involving upstream in vitro investigation, is an automated workflow 
that enables both mechanistic understanding and efficient DBTL cycling. Following the in vitro cell lysate studies, 
the results were translated to the in vivo environment through high-throughput ribosome binding site (RBS) engi-
neering. As a result, we developed a dopamine production strain capable of producing dopamine at concentrations 
of 69.03 ± 1.2 mg/L which equals 34.34 ± 0.59 mg/gbiomass. Compared to state-of-the-art in vivo dopamine production, 
our approach improved performance by 2.6 and 6.6-fold, respectively.

Conclusion  In essence, a highly efficient dopamine production strain was developed by implementing the knowl-
edge driven DBTL cycle involving upstream in vitro investigation. The fine-tuning of the dopamine pathway by high-
throughput RBS engineering clearly demonstrated the impact of GC content in the Shine-Dalgarno sequence 
on the RBS strength.
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Background
Dopamine (3,4-dihydroxyphenethylamine) is a promising 
organic compound in the catecholamine and pheneth-
ylamine families, has key applications in emergency 
medicine for regulating blood pressure, renal function, 
and neurobehavioral disorders [1, 2]. Under alkaline 
conditions, it can self-polymerize into biocompatible 

polydopamine [3], which is applicable in the diagnosis 
and treatment of cancer [4], in agriculture for plant pro-
tection [5], in wastewater treatment to remove heavy 
metal ions and organic contaminants [3, 6–8], and in the 
production of lithium anodes in fuel cells as a strong ion 
and electron conductor [9–11]. Large-scale production of 
dopamine is currently achieved through chemical synthe-
sis [12, 13] or enzymatic systems [14], both of which are 
environmentally harmful and resource-intensive. Dong 
et al. have developed an environmentally friendly method 
for synthesising dopamine hydrochloride [2].

In addition to those dopamine production meth-
ods, in  vivo production of dopamine in Escherichia coli 
(E.  coli) have been established, starting with l-tyrosine 
as the precursor (Fig. 1). The native E. coli gene encoding 
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4-hydroxyphenylacetate 3-monooxygenase (HpaBC) con-
verts l-tyrosine to l-DOPA [15]. Subsequently, l-DOPA 
decarboxylase (Ddc) from Pseudomonas putida catalyses 
the formation of dopamine [16]. Whereas l-DOPA syn-
thesis is well studied [17–20], studies on in  vivo dopa-
mine production are limited [12, 21], with reported 
maximum production titres of 27 mg/L and 5.17 mg/gbio-

mass. Genomic engineering of E. coli is essential to achieve 
increased l-tyrosine concentrations, as l-tyrosine is the 
precursor of l-DOPA and dopamine (Fig. 1). The deple-
tion of the transcriptional dual regulator l-tyrosine 
repressor TyrR [22] and the mutation of the feedback 
inhibition of chorismate mutase/ prephenate dehydroge-
nase (tyrA) [23] could increase l-tyrosine production [18, 

20]. Developing a dopamine production strain is thus a 
promising approach when targeting dopamine synthesis.

To enhance the efficiency of strain construction, as 
well as the evaluation of dopamine production host, the 
application of the design-build-test-learn (DBTL) cycle is 
well suited [24]. Modular design tools, data management 
systems, and models have been integrated into the 
DBTL cycle to support the initial design phase [25, 
26]. The build and testing phases, which involve DNA 
assembly, molecular cloning, and strain analysis, are 
becoming increasingly automated with advanced genetic 
engineering tools [25, 27–31]. Finally, the learning phase 
incorporates both traditional statistical evaluations and 
model-guided assessments, including machine learning 
techniques, to refine strain performance [32, 33]. The 

Fig. 1  Pathways involved in dopamine biosynthesis and regulation in E. coli. Also, the strain engineering targets are shown either by a red 
cross to indicate deletion of tyrR or by underline to indicate overexpression of a gene (tyrA, aroF, aroB, aroL). Dashed lines indicate feedback 
inhibition. G6P: Glucose-6-phosphate; F6P: Fructose-6-phosphate; G3P: Glycerinaldehyde-3-phosphate; PEP: Phosphoenolpyruvate; TCA: 
Tricarboxylic acid; Ru5P: Ribulose-5-phosphate; E4P: Erythrose-4-phosphate; DAHP: 3-Desoxyarabinoheptulosanat-7-phosphate; CHA: Chorismate; 
PPA: Prephenate; HPPH: 4-Hydroxyphenylpyruvate; L-TYR: l-tyrosine; PPY: phenylpyruvate; L-PHE: l-phenylalanine; AroF/AroG/AroH: 3-Deoxy-D-ar
abinoheptulosonat-7-phosphate-synthase; AroA: 5-Enolpyruvoyl-shikimate-3-phosphate-synthase; AroB: 3-Dehydroquinat-synthase; AroK/ AroL: 
Shikimate-kinase 1 + 2; l-DOPA: 3;4-Dihydroxy-phenylalanin; DQ: Dopaquinone; TyrR: transcriptional regulator; PheA/ TyrA: Chorismate-mutase; TyrB: 
Tyrosine aminotransferase; HpaBC: 4-hydroxyphenylacetate 3-monooxygenase; Ddc: l-DOPA decarboxylase. The schematic graph was created using 
PathVisio3 software [61]
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full automation of DBTL cycles, known as biofoundries 
[34, 35], are becoming central to synthetic biology. One 
major challenge in DBTL cycles is the entry point, as the 
initial round typically starts without prior knowledge. 
Besides biofoundry approaches, rational design [36] and 
hypothesis driven design [37, 38] are the main strategies 
used to select engineering targets. However, in most 
DBTL cycles, engineering targets are selected via design 
of experiment [24, 39–41] or randomised selection 
[42], which can lead to more iterations and extensive 
consumption of time, money and resources. To address 
this, we adopted a mechanistic rather than statistical 
approach, conducting in  vitro tests to assess enzyme 
expression levels in the dopamine production host before 
DBTL cycling, similar to Dudley et  al. and Karim et  al. 
[43, 44]. We will refer to this process as the knowledge 
driven DBTL cycle.

In vitro protein synthesis is a promising format for 
producing biotechnological products such as l-malate 
[45] and synephrine from l-tyrosine [46]. Cell-free 
protein synthesis (CFPS) systems are particularly useful 
for bypassing whole-cell constraints such as membranes 
and internal regulation [47]. Crude cell lysate systems 
are especially advantageous, as they ensure supply of 
e.g. metabolites and energy equivalents [48, 49]. Both 
approaches were applied by Karim et  al. to design 
and optimise metabolic pathways in Clostridium 
autoethanogenum [44]. However, the described work only 
focused on metabolic pathway expression in Clostridium 
autoethanogenum and did not consider further in  vivo 
fine-tuning. Our approach leverages in  vitro crude cell 
lysate systems to test different relative expression levels, 
accelerating strain development in E. coli. To achieve 
efficient strain construction through the DBTL cycle, 
a range of tools are available to translate the different 
relative expression levels into the in  vivo environment, 
including ribosome binding site (RBS) engineering and 
promoter engineering [39]. We chose RBS engineering 
for precise fine-tuning of our dopamine production 
strains.

RBS engineering is a powerful technique to fine-tune 
relative gene expression in synthetic pathways [50–53], 
with tools like the untranslated region (UTR) Designer 
for modulating RBS sequences [54]. However, these tools 
often focus on flanking regions of the Shine-Dalgarno 
(SD) sequence, although the complex region is crucial 
for secondary structures of the RBS [53–56]. Simplified 
RBS engineering can be achieved by modulating the SD 
sequence without interfering the secondary structure 
[57, 58]. Whereas RBS characterisation typically involves 
single genes to assess translation initiation rate (TIR) 
or Gibbs free energy [54, 57, 59], only a few studies 
have explored polycistronic pathways for compound 

production, such as violacein [60]. These studies have 
generally been non- or semi-automated, with automation 
mainly limited to the cultivation process [52, 59, 60]. The 
knowledge driven DBTL cycle aims to utilise bi-cistronic 
gene expression to build an efficient synthetic pathway 
for dopamine production.

This study demonstrates the development and 
optimisation of a dopamine production strain with the 
help of the knowledge driven DBTL cycle for rational 
strain engineering. By combining in  vitro pathway 
design with high-throughput in  vivo RBS engineering, 
dopamine production was increased. A host strain was 
engineered for high l-tyrosine production, enabling 
efficient dopamine synthesis.

Materials and methods
Media and buffer solutions
2xTY medium was prepared as described previously [38]. 
SOC medium was prepared by adding 5 g/L yeast extract, 
20  g/L tryptone, 10  mM NaCl, 2.5  mM KCl, 10  mM 
MgCl2 and 10 mM MgSO4 dissolved in deionised water. 
After autoclaving, glucose was added from a sterile stock 
to a final concentration of 20 mM.

The minimal medium for cultivation experiments 
consisted of 20 g/L glucose, 10% 2xTY medium, 2.0 g/L 
NaH2PO4⋅2H2O, 5.2  g/L K2HPO4, 4.56  g/L (NH4)2SO4, 
15 g/L 3-(N-morpholino) propanesulfonic acid (MOPS), 
50  µM vitamin B6, 5  mM phenylalanine, 0.2  mM 
FeCl2, and 0.4%  (V/V) trace element stock solution. 
The composition of the trace element stock solution 
was 4.175  g/L FeCl3⋅6H2O, 0.045  g/L ZnSO4⋅7H2O, 
0.025  g/L MnSO4⋅H2O, 0.4  g/L CuSO4⋅5H2O, 0.045  g/L 
CoCl2⋅6H2O, 2.2 g/L CaCl2⋅2H2O, 50 g/L MgSO4⋅7H2O, 
and 55  g/L sodium citrate dehydrate. Stock solutions 
of salts, trace elements and sugars were autoclaved 
separately, and stock solutions of antibiotics were fil-
ter sterilised and stored at −  20  °C. All compounds 
were combined shortly before the experiments to avoid 
possible ageing of the medium. Appropriate antibiot-
ics and inducers were added to the liquid medium and 
agar plates at the following concentrations: ampicillin 
100  µg/mL, kanamycin 50  µg/mL, and isopropyl β-d-1-
thiogalactopyranoside (IPTG) 1 mM.

Phosphate buffer 50  mM at pH 7 was prepared by 
adding 28.9  mL of 1  M KH2PO4 and 21.1  mL of 1  M 
K2HPO4 stock solution to 1  L of deionised water, 
adjusting the pH by adding KOH and then autoclaving 
the buffer. Reaction buffer for the crude cell lysate system 
was prepared by adding 0.2  mM FeCl2, 50  µM vitamin 
B6, and 1 mM l-tyrosine or 5 mM l-DOPA to phosphate 
buffer. To prepare the concentrated reaction buffer, a 
fivefold amount of the supplements was used.
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Bacterial strains, genes and plasmids
The bacterial strains and plasmids used in this study 
are listed in Tables  1 and 2. The Primers are listed in 
supplementary information S1. The DNA sequence of the 
heterologous expressed genes hpaBC and ddc is given in 
supplementary information S2. E.  coli DH5α was used 
as the cloning strain and E. coli FUS4.T2 was used as the 
production strain.

The pET plasmid system was used as a storage vector 
for heterologous genes, single gene insertion only 
(pET_hpaBC, pET_ddc). The pJNTN plasmid was used 
for the crude cell lysate system (single gene plasmids 
only: pJNTN_hpaBC, pJNTN_ddc) and plasmid library 
construction (bi-cistronic construct: pJNTN_hpaBC_
ddc). The constructed plasmid library is available in 
supplementary information S3.

Crude cell lysates system
E.  coli FUS4.T2 pJNTN_hpaBC and pJNTN_ddc were 
grown overnight in 5  mL 2xTY medium containing 
50  µg/mL kanamycin at 37  °C on a rotary shaker set at 
130  rpm. For main cultures, 100  mL of 2xTY medium 
containing 50  µg/mL kanamycin was inoculated into 
a 500 mL baffled shaking flask to a final OD600nm of 0.1 
and cultivated at 37 °C on a rotary shaker set at 140 rpm. 
At optical density ≈ 0.6 measured at 600 nm (OD600nm), 
1  mM IPTG, 50  µM vitamin B6, 5  mM phenylalanine, 
and 0.2 mM FeCl2 were added to the culture. After 16 h 
of cultivation, a final OD600nm between 8 and 10 was 
achieved.

After cultivation, the cells were diluted to OD600nm ≈ 8 
using phosphate buffer for adjustments. 80  mL of the 
cultured broth were centrifuged at 7830 rpm for 10 min 
at 4 °C. The cell pellet was washed with 10 mL of phos-
phate buffer. After a final centrifugation at the same set-
tings as before, the cell pellet was resuspended in 9.8 mL 
phosphate buffer and supplemented with 50  µL DNAse 
1 (Thermofisher, Darmstadt, Germany) and 100  µL 
lysozyme (100  mg/mL, Sigma Aldrich, Darmstadt, Ger-
many). Cell lysis was performed at 37  °C for 1  h on a 
shaker set at 800  rpm, whereas the resuspended cells 
were distributed in a deep well plate to allow sufficient 

heat transfer. After cell lysis, the cells were centrifuged at 
4 °C for 10 min at 2000 rpm.

A total of 400  µL of lysate (supernatant) was mixed 
with 100  µL of 5 × reaction buffer in a deep well plate. 
The lysate was mixed in various ratios between the E. coli 
FUS4.T2 pJNTN_hpaBC lysate and the E.  coli FUS4.
T2 pJNTN_ddc lysate. The plate was sealed with a gas-
permeable membrane (AeraSeal BS-25, Excel Scientific, 
Victorville, USA) to allow oxygen supply and was shaken 
for 20 h at 37 °C and 800 rpm.

Construction of l‑tyrosine production strains
The deletion of the tyrR repressor gene and inser-
tion of the Ptac-tyrATyr263Cys cassette into the chromo-
somal DNA of the E.  coli FUS4 strain was performed 
using the CRISPR-Cas system in combination with 
λ-Red recombineering, as described [65]. Specific 
pTarget-cat-sgRNA plasmids were constructed for 
the deletion of the tyrR gene and the insertion of the 
Ptac-tyrATyr263Cys cassette. This was done by introduc-
ing a 20-nucleotide specific guide sequence into the 
pTarget-cat plasmid using the inverse PCR method. 
Inverse PCR was performed using the Target-uni-rev 
primer in combination with a corresponding specific 

Table 1  Strains used in this study

Strain Genotype/ Strain information References/Source

E. coli DH5α supE44 ΔlacU169 (Φ80lacZ_M15) hsdR17 recA1gyrA96 thi-1 relA1 [62]

E. coli FUS4 Wild type W3110 (F−, λ− IN (rrnD-rrnE) 1, rph-1) ∆(pheA tyrA aroF) Δlac::Ptac::aroFBL+ [63]

E. coli FUS4.T1 Wild type W3110 (F−, λ− IN (rrnD-rrnE) 1, rph-1) ∆(pheA tyrA aroF) Δlac::Ptac::aroFBL+ Δxyl::Ptac::tyrA 
(Y263C)

(This study)

E. coli FUS4.T2 Wild type W3110 (F−, λ− IN (rrnD-rrnE) 1, rph-1) ∆(pheA tyrA aroF) Δlac::Ptac::aroFBL+ Δxyl::Ptac::tyrA 
(Y263C) ∆tyrR

(This study)

Table 2  Plasmids used in this study

Plasmid Plasmid characteristics References/
Source

pET 20b +  Plac; AmpR; lacIq Merck (Darmstadt)

pET_hpaBC Plac; AmpR; lacIq This study

pET_ddc Plac; AmpR; lacIq This study

pJNTN-m-L Ptac; KanR; lacIq [64]

pJNTN_hpaBC Ptac; KanR; lacIq This study

pJNTN_ddc Ptac; KanR; lacIq This study

pJNTN_hpaBC_ddc Ptac; KanR; lacIq This study

pTarget-sgRNA-xylAB CmR, ColE1ori This study

pTarget-sgRNA-tyrR CmR, ColE1ori This study

pCas Rep101Ts, KmR [65]

pTarget-F StrR, ColE1ori [65]

pTarget-cat CmR gene, ColE1ori This study

pJF119-tyrATyr263Cys AmpR, ColE1ori Unpublished
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primer, sgTyrR or sgXylAB. After inverse PCR, the 
DNA matrix was removed by digestion with DpnI and 
treated with T4 polynucleotide kinase. The fragments 
were then ligated with T4 DNA ligase. The competent 
cells of the E. coli DH5α strain were then transformed 
with the ligation mixture and plated on LB agar 
medium supplemented with chloramphenicol (25  µg/
mL). From selected clones, plasmid DNA was isolated 
and verified using sequencing.

The strain E. coli FUS4.T1 was created by integrating 
a fragment containing a copy of the E.  coli tyrA 
(Tyr263Cys) gene controlled by the Ptac promoter. The 
integration locus for the xylose metabolism operon 
(xylA-xylB) was selected. The fragment containing 
the Ptac-tyrA Tyr263Cys cassette flanked by short 
homologous sequences (approximately 40–45 bp xylA-
xylB loci) was amplified from plasmid pJF119-Ptac-
tyrATyr263Cys using primers XylA-int and XylB-int. 
The FUS4 strain containing the pCas plasmid was 
transformed with the xylA-Ptac-tyrATyr263Cys-xylB 
amplicon and the specific pTarget-sgRNA-xylAB 
plasmid by electroporation. After transformation, 
clones were selected on a McConkey-Agar medium 
containing 1% xylose, 50 µg/mL kanamycin, and 25 µg/
mL chloramphenicol. The selected clones (KmR, CmR 
and Xyl− phenotype) were verified using PCR (primers 
Xyl-scrin5’ and Xyl-scrin3’) and by sequencing the 
PCR product. Both the pCas and pTarget-sg-xylAB 
plasmids were removed from the resulting strain as 
described previously [65].

To delete the tyrR gene from FUS4.T1, we amplified 
and ligated two fragments, HR1 and HR2, which 
flanked the target gene. These fragments were 
amplified using primers tyrR-del-L5′/tyrR-del-
L3′-BamH and tyrR-del-R5′-BglII/tyrR-del-R3′, 
respectively. After digesting HR1 with BamHI and 
HR2 with BglII, we ligated the two fragments together 
and amplified them using end primers tyrR-del-L5′ 
and tyrR-del-R3′. The FUS4.T1 strain containing the 
pCas plasmid was transformed by electroporation 
with the resulting HR1-HR2 fragment, as well as 
specific pTarget-cat-sgRNA-tyrR, enabling subsequent 
homologous recombination by λ-red recombineering. 
After transformation, we selected clones on 
LB-Agar containing kanamycin (50  μg/mL) and 
chloramphenicol (25 μg/mL), and verified the resulting 
strain (FUS4.T2) by PCR (using primers tyrR-del-L5′ 
and tyrR-del-R3′) and sequencing of the PCR product. 
All transformation procedures were carried out using 
an electroporation protocol with a voltage of 2.3 kV in 
a 2-mm cuvette using Bio-Rad equipment.

Construction of dopamine production strains
The genes that enable dopamine production were 
extracted from E.  coli BL21 (DE3) for hpaBC and 
Pseudomonas putida KT2440 for ddc. The Monarch 
Genomic DNA Purification Kit (NEB, Ipswich, USA) was 
used to isolate the chromosomal DNA of the organisms. 
Genes were amplified by PCR and verified by 1% agarose 
gel electrophoresis. For automated DNA fragment 
construction by PCR, Q5 Hot Start High-Fidelity DNA 
Polymerase (NEB, Ipswich, USA) was used according to 
the manufacturer’s instructions. The plasmid pJNTN-
m-L was digested via NdeI (NEB, Ipswich, USA) 
according to the manufacturer’s instructions with further 
addition of Arctic phosphatase (NEB, Ipswich, USA) 
and an inactivation step at 65  °C for 20 min. Fragments 
were then verified by 1% agarose gel electrophoresis. 
The different fragments were assembled by automated 
DNA assembly. For this purpose, PCR fragments were 
diluted 1:4, and 500–700  nL of each fragment mixture 
was combined with 75  ng of digested pJNTN-m-L or 
pET20b( +), 5  µL of NEBuilder HiFi DNA Assembly 
Master (NEB, Ipswich, USA), and water was added to 
reach a final volume of 10 µL. The mixture was incubated 
at 50 °C for 1 h.

Chemically competent cells were prepared as described 
previously [66]. Subsequent automated heat shock 
transformation was executed as described previously 
[66]. The transformation approach was plated on 6-well 
agar plates and incubated for 20 h at 37 °C. The resulting 
colony forming units (CFU) were analysed by colony 
PCR (OneTag Quick-Load 2 × Master Mix, NEB, Ipswich, 
USA) according to the manufacturer’s instructions. CFUs 
with the correct length of colony PCR product were used 
for further plasmid isolation.

Plasmids were extracted using the NucleoSpin Plasmid 
Kit (Macherey–Nagel, Düren, Germany) according to the 
manufacturer’s instructions. The isolated pJNTN_hpa_
ddc, pET_hpa and pET_ddc plasmids were verified by 
sequencing and used for transformation. Subsequently, 
the E. coli FUS4.T2 strain was transformed with pJNTN_
hpa_ddc for production experiment and E.  coli DH5α 
strain with pET_hpa and pET_ddc plasmids for storage.

Microbioreactor cultivation
Cultivation was performed using a microbioreactor 
system (RoboLector L, Beckman Coulter, Brea, USA) 
equipped with 48-well microplates (FlowerPlate, MTP-
48-B, Beckman Coulter, Brea, USA), each well having a 
maximum volume of 1  mL and containing either 2xTY 
or minimal medium. Cultivation was performed under 
controlled conditions of 85% humidity, at a temperature 
of 37  °C, and with a shaking frequency of 1100 rpm. To 
ensure sterile conditions, each plate was sealed with 
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a gas-permeable membrane (AeraSeal BS-25, Excel 
Scientific, Victorville, USA). Backscatter values were 
continuously monitored by the microbioreactor system.

Both precultures and main cultures were cultivated 
on the same plate. Wells in columns one and eight were 
used for the preculture, whereas the remaining columns 
were used for triplicate main culture experiments. 
The preculture was inoculated with a single CFU of 
E.  coli FUS4.T2, grown in 2xTY medium, and used to 
inoculate the main culture. When the preculture reached 
a backscatter value of 12.5 (Gain 2; OD600nm ≈ 4), 50 µL 
of the preculture broth was added to 950 µL of minimal 
medium for inoculation at OD600nm ≈  0.2. The main 
culture was subsequently cultivated in minimal medium. 
Unless otherwise stated, the total cultivation time was 
24 h.

Analytical methods
Quantification of l-tyrosine, l-DOPA, and dopamine 
was performed by analysing the cell-free supernatant of 
the cultivation broth. HPLC analysis was performed on 
an Agilent 1200 series instrument (Agilent Technologies, 
Santa Clara, USA) equipped with an autosampler, and 
a UV detector. Separation was performed on a BDS 
Hypersil C18 (150 × 4.6  mm, 5  μm; Thermo Scientific: 
28105-154630) which was protected by an BDS Hypersil 
C18 Drop-in (10 × 4 mm, 5 μm; Thermo Scientific: 28105-
014001). Fluorometric detection (excitation at 230  nm 
and emission at 280  nm) was performed. The degassed 
mobile phase consisted of 0.2% trifluroacetic acid and 
10% [v/v] methanol in water. The column was heated 
to 30  °C, the flow rate was set to 0.4  mL/min and the 
injection volume was 10  µL. Standards were measured 
over a range of 0.1 mM to 5 mM.

If necessary, optical density of the cell culture was 
measured at a wavelength of 600  nm. Glucose con-
centrations were quantified using a LaboTrace auto-
matic analyser (TraceAnalytics GmbH). LC–MS/MS 

proteomics was performed externally by the Hohen-
heim Core Facility.

Results
Host strain engineering leads to high l‑tyrosine supply
The precursor for dopamine synthesis is l-tyrosine. 
Consequently, a l-tyrosine-producing strain was 
engineered to ensure sufficient l-tyrosine supply for 
the subsequent formation of dopamine. The strain 
E.  coli FUS4 of Gottlieb et  al. is auxotrophic for 
l-phenylalanine and l-tyrosine and served as a parental 
strain [63]. Subsequent strain engineering focused 
on the integration of the modified gene tyrA, and the 
deletion of the gene encoding the TyrR regulator (tyrR) 
(Fig. 1). The TyrA protein was modified at residue 263 
(Y263C) to overcome feedback inhibition [23], which 
allows accumulation of high l-tyrosine concentrations 
in the medium. In the FUS4.T1 strain, only tyrA was 
overexpressed and mutated, whereas the additional 
deletion of tyrR resulted in a 38% increase in l-tyrosine 
concentration of FUS4.T2. Table  3 shows that the 
relative transcription increase of tyrA corresponds 
with the increasing titre. To note, FUS4.T2 remains 
l-phenylalanine auxotrophic.

The majority of l-tyrosine is produced during the 
initial growth phase (supplementary information S4). 
Hence, E. coli FUS4.T2 was qualified as an optimal host 
for the production of tyrosine-derived products. No 
further adjustments were made to improve l-tyrosine 
production, as the primary focus of this work was to 
optimise dopamine formation.

In order to establish dopamine production, it is essen-
tial to overexpress two biosynthetic genes: hpaBC, 
encoding the 4-hydroxyphenylacetate 3-monooxygenase, 
and ddc, encoding the l-DOPA decarboxylase (Fig.  2). 
These genes were amplified by PCR from the genome of 
E. coli BL21 (DE3) and P. putida KT2440, respectively.

Table 3  Summary of the key characteristics of different l-tyrosine production strains including the strains constructed in this study

The strains E. coli FUS4, E. coli FUS4.T1, and E. coli FUS4.T2 were investigated in relative transcription of tyrA (n = 3) and l-tyrosine production. Relative expression was 
calculated according to the housekeeping gene ftsZ. l-tyrosine concentration was measured after 52 h of cultivation in a microbioreactor device (n = 3)

Strain Genotype Rel. transcription tyrA l-Tyrosine [g/L] Resource

E. coli K12 ΔtyrR K12 ΔtyrR pCL1920::PLtetO−1aroGfbrtyrAfbrppsAtktAb – 0.62 ± 0.026 [67]

F E. coli MG1655 pBbA5a::tyrB-tyrA*-aroC T1-Ptrc-aroA-aroL pBbB5c::aroE-aroD-
aroBop-aroG*-ppsA-tktA

– 2.17 ± 0.38 [68]

SCK5 W3110 ΔtyrR aroG:: PBBa_J23100-synUTR​aroG-aroGfbr tyrA:: PBBa_J23100-synUTR​
tyrA-tyrAfbr ParoABCDELtyrB-UTR​aroABCDELtyrB:: PBBa_J23100-synUTR​aroABCDELtyrB PppsA-UTR​
ppsA:: PBBa_J23100-synUTR​ppsA(V4)

– 0.52 ± 0.17 [69]

FUS4 LJ110 ∆(pheA tyrA aroF) Δlac::Ptac::aroFBL+ 0.05 ± 0.01 – [63]

FUS4.T1 LJ110 Δ(∆(pheA tyrA aroF) Δlac::Ptac::aroFBL+ Δxyl::Ptac::tyrA (Y263C) 30.59 ± 1.20 0.60 ± 0.02 This study

FUS4.T2 LJ110 ∆(pheA tyrA aroF) Δlac::Ptac::aroFBL+ Δxyl::Ptac::tyrA (Y263C) ∆tyrR 48.01 ± 1.32 0.83 ± 0.01 This study
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Concept of the knowledge driven DBTL cycle for efficient 
engineering of a dopamine production strain
Often, rather randomised and statistical methods are 
applied to enter the DBTL cycle [24, 39–42]. Here, we 
follow a rational approach by using the crude cell lysate 
method [44, 49], in order to implement the robotic DBTL 
workflow (supplementary information S5) using E.  coli 
(Fig. 2). Fundamental enzyme kinetics were investigated 
as a prerequisite for the subsequent knowledge driven 
optimisation. The in  vitro enzyme kinetic study builds 
upon the approaches of Dudley et  al. and Karim et  al. 
[43, 44], enabling more efficient fine-tuning pathways. 
Accordingly, crude cell lysates of two single enzyme-
producing strains were mixed, enabling the analysis of 
in  vitro product formation. This technique provides 
key insights for optimal DBTL design, reduces DBTL 
iterations, and enhances process efficiency.

Following in  vitro investigations, the conventional 
DBTL cycle was applied to further fine-tune dopamine 
production. To accomplish this, high-throughput RBS 
engineering was implemented, as this is a suitable 
method for graduated tuning of gene expression [51–53]. 
The production strains were designed in silico (primer 
containing an engineered optimal RBS), amplified via 
PCR, and integrated into the pJNTN-m-L backbone 

vector through scarless Gibson assembly. The E.  coli 
DH5α was transformed with the reaction mixture, 
followed by strain selection and quality control. Once 
the correctly assembled plasmids were isolated, the 
production strain (E. coli FUS4.T2 pJNTN_hpa_ddc) was 
constructed via heat shock transformation. Testing was 
executed in a high throughput microbioreactor system, 
with subsequent offline analysis of product and biomass 
concentration. The evaluation of this automated DBTL 
workflow was conducted through analysis of the success 
rate [70], which is defined as the percentage of correctly 
constructed strains in relation to the designed strains.

The insights gained from the initial knowledge driven 
DBTL cycle will inform a subsequent RBS engineering 
strategy, with the objective to achieve enhanced product 
titres and to identify the most efficient producer strain.

In vitro rational dopamine pathway design enables 
systematic in vivo design
The de novo design of metabolic pathways relies on 
the known properties of involved enzymes. Regarding 
the dopamine pathway, the enzyme parameters of 
Ddc are known [16], whereas HpaBC is not completely 
characterised [15]. Hence, in  vitro studies expressed 
hpaBC and ddc genes separately, followed by mixing the 

Fig. 2  The knowledge driven DBTL cycle for rational dopamine strain engineering. In the upper part, the schematic pathway for dopamine 
production based on l-tyrosine via l-DOPA to dopamine is shown. The enzymes 4-hydroxyphenylacetate 3-monooxygenase (HpaBC) and l-DOPA 
decarboxylase (Ddc) are responsible for the respective conversions. The rational design of the pathway is performed by preliminary in vitro 
experiments. Based on the optimal ratio of the pathway components, the DBTL cycle can be entered in a rational way. Therefore, effective 
and straightforward strain engineering is possible. Partly created in BioRender. Takors (2025) https://​biore​nder.​com/​m17m8​52

https://biorender.com/m17m852
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lysates, similar to the methods described by Dudley et al. 
[43] and Karim et al. [44].

The KM value of Ddc has been reported as 
0.092 ± 0.019 mM for l-DOPA [15, 16]. By contrast, the 
KM of HpaBC ranges between 0.0094 ± 0.0016  mM for 
4-hydroxyphenylacetate and 0.514 ± 0.1  mM for methyl 
hydroxybenzoate, both of which are structurally different 
from l-tyrosine, the targeted substrate of this study. As 
accumulation of l-DOPA has the potential to promote 
spontaneous oxidation and thus melanin production, bal-
anced enzyme levels are required to achieve efficient con-
version of l-tyrosine to dopamine without accumulating 
intermediates and reduced product formation. Hypoth-
esizing that Ddc is catalytically more efficient than 
HpaBC, we investigated the effect of increasing HpaBC 
to Ddc ratios, ranging from 1:1 to 100:1. Increasing the 
ratio of HpaBC to Ddc resulted in progressively higher 
dopamine titres, achieving an overall increase of 98% 
(Fig. 3A). Given the converging trend we concluded that 
much higher amounts of HpaBC are needed to equili-
brate the flux to dopamine.

High‑throughput design for RBS engineering
Next, we aimed to effectively translate the in vitro results 
into the in vivo dopamine pathway design by engineering 
the Shine-Dalgarno (SD) sequence regions of hpaBC and 
ddc. This approach should enable the fine-tuning of gene 
expression, which is crucial for further mechanistic strain 
improvement.

The SD sequence, composed of six nucleotides (AGG​
AGA​), theoretically offers 4,096 possible combinations 
(46) for a single sequence, and up to 16.8 million com-
binations (46 × 46) in the bi-cistronic context. Previous 
studies have characterised a subset of RBS sequences by 
engineering the SD region in order to better understand 
its function and develop reliable design methods [57]. 
As key performance indicators, TIRs were calculated by 
measuring GFP expression and biomass accumulation. 
TIR, as characteristic pattern for RBS sequences, pro-
vided the starting point for designing bi-cistronic expres-
sion systems, allowing precise fine-tuning of relative 
enzyme expression levels (Fig. 4C).

Two complementing strategies were followed to screen 
the parameter space:

Strategy A: Mimicking in vitro approaches within the 
in vivo environment
Strategy B: Analysing the system’s boundaries to 
identify potential limitations and opportunities

Hence, ‘A’ checks the transferability of the in  vitro 
results whereas ‘B’ aims to identify application 
boundaries.

Strategy A assumes that the TIR ratio of two 
subsequent genes in one operon basically determines 
the ratio of the translated protein products. For 
simplicity, the findings of the in  vitro tests were 
translated to in  vivo application by identifying RBS 

Fig. 3  In vitro and in vivo investigation of dopamine production in E. coli FUS4.T2. A Supernatants of lysed cells were mixed in different ratios 
with increasing amounts of HpaBC. Data represent mean of replicates (n = 3) with standard deviation as error bars. B For in vivo investigation 
of different hpaBC:ddc ratio duplicates were made using different RBS sequences (black diamond) compared with the in vitro results (green square). 
HpaBC: 4-hydroxyphenylacetate 3-monooxygenase; Ddc: l-DOPA decarboxylase; TIR: translation initiation rate; RBS: ribosome binding site
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pairs of hpaBC and ddc that show the same TIR ratio as 
in related in vitro tests. This assumption is limited, since 
it does not consider dilution factors that affect in vivo 
tRNA availability, as well as post translational and 
folding regulations. However, TIRs of all RBS sequences 
were calculated. Next, TIR(hpaBC) was multiplied by 
TIR(ddc) to identify appropriate couples matching the 
numerical ratio within the in  vitro tests. For instance, 
if the in  vitro ratio was 2:1 (resulting in a numerical 
ratio of 0.5), a corresponding in  vivo overall TIR ratio 
of 0.5 was established through RBS engineering. The 
intention was to test not only single RBS combinations 
but to check two fitting RBS combinations at least. 
In total, 15 different combinations were selected for 
detailed analysis (see Fig. 4A).

To further expand the design space and enable the 
mechanistic analysis of the dopamine biosynthesis 
pathway (Strategy B), RBS pairs were handpicked from 
the pool of characterised RBS sequences [57] and further 
complemented with the strongest RBS candidates. Tests 
with the SD sequence ‘AGG​AGA​’ in both genes served 

as reference in all experimental series. Summarizing, 
strategy B comprised 41 different combinations (Fig. 4B).

The sum of RBS designs (15 + 41 = 56) were 
implemented into E. coli FUS4.T2 using the bi-cistronic 
vector pJNTN_hpaBC_ddc (supplementary information 
S3) applying the automated strain construction workflow 
(supplementary information S5). Finally, 51 out of 56 
designs could be successfully constructed and further 
analysed, indicating a success rate of 91.1%.

Mechanistic understanding of heterologous dopamine 
pathway design
Values A.01-A.13 of Fig. 5A represent the results of the 
in vitro to in vivo transfer according to strategy A. Appar-
ently, trends of the in vitro tests could not be reproduced 
in  vivo. Initial evaluation of the design to mimic the 
in vitro to in vivo transitions, revealed that the intended 
ratios of RBS_hpaBC to RBS_ddc did not produce iden-
tical results in both environments (Fig.  3). Two in  vivo 
strains were designed to mimic one in  vitro ratio, and 
constructs with stronger RBS_hpaBC (high TIR ratio) 

Fig. 4  High-throughput ribosome binding site (RBS) engineering for optimised dopamine production. Number of RBS relates to the already 
tested RBS from Zhang et al. [57] A Overview of tested RBS combinations for mimicking the in vitro investigation (Strategy A). Two compositions 
with the highest degree of similarity were selected for each in vitro analysis point. B A random selection of independent points was made in order 
to analyse the system boundary (Strategy B). C Principle of RBS engineering using the 6 base pair Shine-Dalgarno (SD) sequence as mutation site. 
Up to 16.8 million combinations (46 × 46) in the bi-cistronic context are possible. Rational design was therefore applied using in vitro data as well 
as literature data from Zhang et al. [57]. The two different key strategies for RBS engineering were applied. Created in BioRender. Takors (2025) 
https://​biore​nder.​com/​t91y5​51

https://biorender.com/t91y551
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consistently produced higher dopamine titres (Fig.  3B, 
supplementary information S6). However, strain A.10 
yielded the highest dopamine titre (69.03 ± 1.2 mg/L), an 
increase of 15% compared to the reference.

Surprisingly, results applying strategy B (Fig.  5A: 
B.01-B.37) revealed constructs with low dopamine but 
high l-DOPA titres (e.g. B.03, B.11, B.32). Additional 
proteomics indicated reduced Ddc contents in strains 
B.03 and B.11, despite the use of (hypothesized) strong 
RBS sequences (supplementary information S7).

The poor predictability of TIR based dopamine 
production motivated us to consider the impact of GC 
content in RBS as suggested by Zhang et  al. [57] and 
Kuo et al. [71]. The GC content of the reference strain 
was 50% for both RBS sequences. Correlating the RBS 
GC content with the achieved dopamine titres revealed 
that dopamine production decreased when the GC 
content remained at 100% in RBS_hpaBC while the GC 
content in RBS_ddc increased. Accordingly, low GC 
in RBS_ddc amplified dopamine production (Fig.  5B). 
Conversely, maintaining 100% GC content for RBS_ddc 
while reducing GC content in RBS_hpaBC decreases 
dopamine production (supplementary information S6). 
Consequently, highest dopamine titres were achieved 

with high and low GC contents in RBS_hpaBC and 
RBS_ddc, respectively.

Summarizing, the GC content of RBS turns out to 
be the key indicator of RBS strength and translation 
efficiency. Comparing in  vitro and in  vivo outcomes 
confirmed that high GC content in RBS_hpaBC 
(80–100%) and reduced GC content in RBS_ddc 
optimize dopamine production, as shown with the top-
performing strain A.10 (69.03 ± 1.2  mg/L) (Fig.  5B). 
These results indicate that increasing the HpaBC:Ddc 
ratio, either in  vivo or in  vitro, increases dopamine 
production (Fig. 5B and C).

LC–MS/MS Proteomic analysis demonstrated that 
increasing RBS_hpaBC GC content not only improved 
hpaBC expression but also the formation of the related 
protein. The opposite observation was made regard-
ing Ddc: Increasing RBS_ddc GC content reduced Ddc 
levels whereas decreasing the GC content of RBS_ddc 
lead to increased ddc expression (supplementary infor-
mation S7) and likewise elevated Ddc protein lev-
els. Apparently, the optimum GC content for RBS is 
gene context dependent. In the particular application, 
dopamine production can be enhanced by reducing 

Fig. 5  Mechanistic understanding of heterologous dopamine pathway engineering. A Production of dopamine (blue bars) and l-DOPA (grey bars) 
by RBS engineered E. coli FUS4.T2 pJNTN_hpaBC_ddc. B The GC content of RBS_hpaBC was kept at 80–100% and different GC content of RBS_ddc 
was analysed. The best producer was marked in red. C In vitro rational pathway engineering was applied for dopamine synthesis. The supernatants 
from lysed cells were combined in varying ratios with increasing concentrations of Ddc. Data represent mean of replicates (n = 3) with standard 
deviation as error bars
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RBS_ddc GC content and maximizing RBS_hpaBC GC 
content.

Summarizing, this study successfully developed 
a dopamine production strain making use of the 
knowledge driven DBTL cycle. Key findings from 
the in  vitro analysis drove in  vivo studies, ultimately 
identifying pinpointing to RBS engineering as the most 
impactful tool for balancing active enzyme levels in order 
to optimise production.

Discussion
This study demonstrates the development and 
optimisation of a dopamine production strain by 
implementing the knowledge driven DBTL cycle 
for rational strain engineering. This was done using 
a combination of in  vitro investigation with in  vivo 
pathway optimisations, employing high-throughput RBS 
engineering enhances dopamine production.

To develop and optimise a dopamine production 
strain, it was crucial to establish a host strain platform 
that would facilitate dopamine production by providing 
the essential precursor, l-tyrosine. Strategic host strain 
modifications were made to provide a platform for 
subsequent engineering. This resulted in enhanced 
l-tyrosine production as a precursor for dopamine 
production. The E.  coli FUS4 strain was used as the 
parental strain and modified by deletion of tyrR and 
overexpression of engineered tyrA, resulting in the 
E.  coli FUS4.T2 strain. Table  3 indicates that E.  coli 
FUS4.T2 produces an average amount of l-tyrosine 
(0.83 ± 0.01 g/L), aligning well with other studies [67–69]. 
In contrast, only engineering and overexpression of tyrA 
showed lower l-tyrosine production (0.60 ± 0.02 g/L). The 
objective of this study was not to develop an optimised 
l-tyrosine production strain, but rather to establish a 
fundamental l-tyrosine producer as the starting point 
for dopamine production. It should be noted that there 
are additional genome engineering points to consider 
such as inactivating the phosphotransferase system [72] 
by increasing the ppsA gene [73, 74]. However, based on 
the established host strain E. coli FUS4.T2, pathways for 
l-tyrosine derived products can be implemented into the 
strain.

The development of the dopamine producer used the 
knowledge driven DBTL cycle, starting with in  vitro 
cell lysate studies to gain a mechanistic understanding 
of the heterologous biosynthesis. In agreement with 
others [43, 44, 75] the crude cell lysate approach proved 
to be easy-to-apply. However, this advantage may be 
scrutinised by comparing alternate in  vitro methods 
that offer higher precision [76, 77]. In this study, 
individual enzyme levels implemented as HpaBC to 
Ddc ratios ranging from 1:1 to 100:1 were investigated 

to study enzymatic interactions. In accordance 
with other studies [43, 44, 75], the design space was 
efficiently screened, also providing a mechanistic 
understanding of the interacting partners that is not 
provided by alternate randomised designs [39, 41, 42, 
78, 79].

Thanks to the preliminary in  vitro study, the DBTL 
cycle could be entered with an enhanced mechanistic 
understanding. The toolbox of gene expression 
modulation enables the engineering of various gene 
regulation modules, promoters, RBS, and start codons 
[50]. In this study, RBS engineering merged as a 
promising tool to fine tune gene expression and protein 
levels [51–53, 57].

In order to ensure the optimal and reliable functioning 
of the bi-cistronic system, the following conditions have 
been installed to enable systematic RBS engineering: 
the ddc gene was placed after the hpaBC gene to ensure 
that hpaBC has the highest expression [80, 81], and 
the stop codon was swapped for the strong stop codon 
(TAG) to prevent read through [82]. Several studies 
have previously analysed polycistronic operons, albeit 
with a relatively low throughput. One study employed 
machine learning for this purpose, yet no mechanistic 
understanding was integrated [59]. Another study applied 
RBS engineering to enhance violacein production, 
achieving a 2.41 fold increase in titre [60]. Höllerer et al. 
employed a large high-throughput approach integrating 
deep learning, systematically testing RBS sequences and 
their surrounding context. This study revealed that the 17 
bases upstream of the start codon are critical for efficient 
translation [83]. The RBS engineering approach, within 
the knowledge driven DBTL cycle, addresses the first 17 
bases upstream of the start codon.

By fine-tuning dopamine production using RBS 
engineering, final dopamine titres increased by 15.3%, 
reaching 69.03 ± 1.2 mg/L, equivalent to 34.34 ± 0.59 mg/
gbiomass. Notably, the best producer resulted from strategy 
A, which successfully mimicked the in vitro approach in 
the in  vivo environment. Compared to the benchmark 
set by Das et al. [21], which reported reaching dopamine 
titres of 27  mg/L and a product-per-biomass yield of 
5.17  mg/gbiomass, our approach improved performance 
by 2.6 and 6.6-fold, respectively. However, l-DOPA 
accumulation was observed in strains A.01, A.04, A.08, 
B.03, B.06, B.08-B.15, B.32 indicating insufficient Ddc 
levels. Apparently, the active enzyme levels of HpaBC 
and Ddc require well harmonized balancing for optimum 
production, with the ideal ratio determined to be 2.6: 1 in 
this study. Prospective research with enhanced l-tyrosine 
supply may determine whether this ratio remains 
optimal, or needs to be adjusted to support even higher 
carbon fluxes through the biosynthetic pathway.
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The investigations clearly demonstrate the impact of 
GC content in the SD sequence on the RBS strength 
and on the level of gene expression. For hpaBC 
expression, our findings are consistent with previous 
studies [57, 71]. Higher GC content correlates with a 
stronger RBS, whereas lower GC content is associated 
with a weaker RBS. This relationship can be attributed 
to the increased number of hydrogen bonds between 
the GC base pairs. However, for ddc expression, 
the opposite could be shown. This suggests that the 
strength of the RBS is dependent on the gene context 
[51, 81, 84]. Another mechanism associated with 
bi-cistronic expression is translational coupling [85, 
86]. Levin-Karp et al. demonstrated an increase in gene 
expression of the first gene when gene expression of 
the second gene was enhanced [81], but this is not the 
case in our study. However, Ddc protein levels are quite 
low compared to HpaBC protein levels. This could be 
due to the bi-cistronic architecture as described above 
[80, 81], but also due to secondary structures within the 
bi-cistronic system [87, 88]. Assuming that GC content 
is responsible for RBS strength, we again compared 
the in  vitro data with the high-throughput data. Our 
results demonstrated that both approaches result in 
reduced ddc expression, coupled with increased hpaBC 
expression, which in turn leads to enhanced dopamine 
production. However, this finding does not consider 
dilution factors within the in vivo protein expression.

To achieve these results, it was necessary to add 
automation to the knowledge driven DBTL cycle. In 
the following, we will evaluate the holistic automation 
workflow. The existing automated DBTL workflow was 
employed in order to address the two design questions 
that had been defined (mimicking in  vitro approaches 
within the in  vivo environment and analysing the 
system’s boundaries to identify potential limitations 
and opportunities). Out of the 56 constructs that were 
created, 51 strains were successfully constructed, and 
48 strains were successfully sequenced. Limitations of 
the workflow were successful PCR reaction (1  strain), 
DNA assembly and transformation (4  strains), and 
point mutations in the RBS (3 strains). This places the 
success rate of the high-throughput DBTL workflow 
at 85.7% to 91.1%. In comparison, other approaches 
show success rates of 37.5% (semi-automated, Tenhaef 
et al. [89]) to 96.2% (fully automated, Chao et al. [90]). 
Nava et al. reported success rates of 13.6% for positively 
sequenced strains and 20.6% for positively constructed 
strains [70], while Rosch et al. observed a 56.3% success 
rate for positively screened strains [91]. This aligns the 
success rate of our workflow within the range of other 
approaches.

In this work, we were able to develop and optimise an 
efficient dopamine production strain by implementing 
the knowledge driven DBTL cycle involving upstream 
in  vitro investigation. In the subsequent round of the 
knowledge driven DBTL cycle, the dopamine produc-
tion could be further increased by implementing the 
knowledge gained. Incorporating machine learning 
tools promises to advance automation even further 
by identifying optimal candidates for the next DBTL 
iteration. The platform demonstrated here not only 
streamlines strain construction within the bi-cistronic 
framework but is also adaptable to produce a variety of 
target molecules.

Conclusions
The aim of this work was to optimise dopamine 
production in E.  coli. This was achieved by 
implementing the knowledge driven DBTL cycle, 
starting with upstream in  vitro investigation. This 
automated workflow facilitates both mechanistic 
understanding and efficient DBTL cycling. In  vitro 
investigation demonstrated that the active enzyme 
levels of HpaBC and Ddc require well harmonized 
balancing for optimum dopamine production. By 
applying RBS engineering within the knowledge driven 
DBTL cycle, we developed a strain capable of producing 
dopamine at concentrations of 69.03 ± 1.2  mg/L which 
equals 34.34 ± 0.59  mg/gbiomass. Thereby, we clearly 
highlighted how the GC content in the SD sequence 
influences the strength of the RBS and the level of gene 
expression. Key findings from these studies pinpoint 
RBS engineering as the most effective tool for balancing 
active enzyme levels to optimise dopamine production.

Abbreviations
CFU	� Colony forming units
OD	� Optical density
Ddc	� L-DOPA decarboxylase
HpaBC	� 4-Hydroxyphenylacetate 3-monooxygenase
TIR	� Translation initiation rate
E. coli	� Escherichia coli
CFPS	� Cell-free protein synthesis
RBS	� Ribosome binding site
SD	� Shine-Dalgarno
DBTL cycle	� Design-built-test-learn cycle

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12934-​025-​02729-6.

Supplementary Material 1: S1. Primer used in this study. S2. DNA 
sequences of the extracted genes (hpaBC, ddc). S3: Library of different 
high throughput constructs and the different RBS sequences of hpaBC 
and ddc. S4. Host strain construction of E. coli FUS4.T1 and FUS4.T2. S5. 
Overview of the semi-automated DBTL workflow. S6. Evaluation of differ-
ent RBS combinations. S7: Proteomics data.

https://doi.org/10.1186/s12934-025-02729-6
https://doi.org/10.1186/s12934-025-02729-6


Page 13 of 15Hägele et al. Microbial Cell Factories          (2025) 24:111 	

Acknowledgements
The authors acknowledge the support of Carlos Rafael Castillo Saldarriaga 
and Jan Notheisen for valuable comments and Iman Belkis Gemaledin for 
technical assistance. We acknowledge Jens Pfannstiel and Philipp Hubel from 
the Core Facility Hohenheim (University of Hohenheim, Stuttgart, Germany) 
for the support on proteomics.

Author contributions
LH developed the concept and methodology, performed experiments, 
curated, and analysed experimental data and wrote the manuscript. NT 
developed and performed genome engineering of the host strain. RT 
supervised the work of LH and critically reviewed and edited the manuscript. 
All authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. The authors 
gratefully acknowledge the funding of the German Research Foundation 
(DFG, project-number: INST 41/1124-1 FUGG, 445760252) for the technical 
equipment used in this study.

Availability of data and materials
The datasets supporting the conclusions of this article are available in the 
DaRUS repository [https://​doi.​org/​10.​18419/​darus-​4714].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 19 January 2025   Accepted: 24 April 2025

References
	1.	 Abrahamsen AM, Storstein L, Westlie L, Storstein O. Effects of dopamine 

on hemodynamics and renal function. Acta Med Scand. 1974;195:365–73. 
https://​doi.​org/​10.​1111/j.​0954-​6820.​1974.​tb081​54.x.

	2.	 Dong L, Wang Y, Dong Y, Zhang Y, Pan M, Liu X, et al. Sustainable produc-
tion of dopamine hydrochloride from softwood lignin. Nat Commun. 
2023;14:4996. https://​doi.​org/​10.​1038/​s41467-​023-​40702-2.

	3.	 Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface 
chemistry for multifunctional coatings. Science. 2007;318:426–30. https://​
doi.​org/​10.​1126/​scien​ce.​11472​41.

	4.	 Haddad F, Sawalha M, Khawaja Y, Najjar A, Karaman R. Dopamine and 
levodopa prodrugs for the treatment of Parkinson’s disease. Molecules. 
2017. https://​doi.​org/​10.​3390/​molec​ules2​30100​40.

	5.	 Liu Q, Gao T, Liu W, Liu Y, Zhao Y, Liu Y, et al. Functions of dopamine in 
plants: a review. Plant Signal Behav. 2020;15:1827782. https://​doi.​org/​10.​
1080/​15592​324.​2020.​18277​82.

	6.	 Alfieri ML, Weil T, Ng DYW, Ball V. Polydopamine at biological interfaces. 
Adv Colloid Interface Sci. 2022;305: 102689. https://​doi.​org/​10.​1016/j.​cis.​
2022.​102689.

	7.	 Chen R, Lin B, Luo R. Recent progress in polydopamine-based composites 
for the adsorption and degradation of industrial wastewater treatment. 
Heliyon. 2022;8: e12105. https://​doi.​org/​10.​1016/j.​heliy​on.​2022.​e12105.

	8.	 Cheng K, Li M, Zhang S, He M, Yu J, Feng Y, Lu S. Study on the structure 
and properties of functionalized fibers with dopamine. Colloids Surf A. 
2019;582: 123846. https://​doi.​org/​10.​1016/j.​colsu​rfa.​2019.​123846.

	9.	 Lei C, Han F, Li D, Li W-C, Sun Q, Zhang X-Q, Lu A-H. Dopamine as the 
coating agent and carbon precursor for the fabrication of N-doped car-
bon coated Fe3O4 composites as superior lithium ion anodes. Nanoscale. 
2013;5:1168–75. https://​doi.​org/​10.​1039/​C2NR3​3043A.

	10.	 Han X, Ling X, Yu D, Xie D, Li L, Peng S, et al. Atomically dispersed 
binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes 
for reversible oxygen reduction and evolution. Adv Mater. 2019;31: 
e1905622. https://​doi.​org/​10.​1002/​adma.​20190​5622.

	11.	 Chung DY, Jun SW, Yoon G, Kwon SG, Shin DY, Seo P, et al. Highly dura-
ble and active PtFe nanocatalyst for electrochemical oxygen reduction 
reaction. J Am Chem Soc. 2015;137:15478–85. https://​doi.​org/​10.​1021/​
jacs.​5b096​53.

	12.	 Ashnagar A, Gharib Naseri N, Nematollahi M. Synthesis of dopamine 
hydrochloride from vanillin. Orient J Chem. 2007;23:455–60.

	13.	 Tian SZ, Yimeng D, Chengyan T, Fawen L, Guangqian L, Haifeng W, et al. 
Synthesis method of dopamine hydrochloride. 2022.

	14.	 Lee S-G, Hong S-P, Sung M-H. Development of an enzymatic system for 
the production of dopamine from catechol, pyruvate, and ammonia. 
Enzyme Microb Technol. 1999;25:298–302. https://​doi.​org/​10.​1016/​
S0141-​0229(99)​00071-X.

	15.	 Deng Y, Faivre B, Back O, Lombard M, Pecqueur L, Fontecave M. 
Structural and functional characterization of 4-hydroxyphenylacetate 
3-hydroxylase from Escherichia coli. ChemBioChem. 2020;21:163–70. 
https://​doi.​org/​10.​1002/​cbic.​20190​0277.

	16.	 Koyanagi T, Nakagawa A, Sakurama H, Yamamoto K, Sakurai N, Takagi 
Y, et al. Eukaryotic-type aromatic amino acid decarboxylase from the 
root colonizer Pseudomonas putida is highly specific for 3,4-dihydroxy-
phenyl-l-alanine, an allelochemical in the rhizosphere. Microbiology. 
2012;158:2965–74. https://​doi.​org/​10.​1099/​mic.0.​062463-0.

	17.	 Fordjour E, Adipah FK, Zhou S, Du G, Zhou J. Metabolic engineer-
ing of Escherichia coli BL21 (DE3) for de novo production of L-DOPA 
from d-glucose. Microb Cell Fact. 2019;18:74. https://​doi.​org/​10.​1186/​
s12934-​019-​1122-0.

	18.	 Muñoz AJ, Hernández-Chávez G, de Anda R, Martínez A, Bolívar F, 
Gosset G. Metabolic engineering of Escherichia coli for improving 
l-3,4-dihydroxyphenylalanine (l-DOPA) synthesis from glucose. J 
Ind Microbiol Biotechnol. 2011;38:1845–52. https://​doi.​org/​10.​1007/​
s10295-​011-​0973-0.

	19.	 Kramer M, Kremer-Muschen S, Wubbolts MG. Process for the preparation 
of L-3, 4-dihydroxyphenylalanine by aerobic fermentation of a microor-
ganism. 2006.

	20.	 Wei T, Cheng B-Y, Liu J-Z. Genome engineering Escherichia coli for L-DOPA 
overproduction from glucose. Sci Rep. 2016;6:30080. https://​doi.​org/​10.​
1038/​srep3​0080.

	21.	 Das A, Verma A, Mukherjee KJ. Synthesis of dopamine in E. coli using 
plasmid-based expression system and its marked effect on host growth 
profiles. Prep Biochem Biotechnol. 2017;47:754–60. https://​doi.​org/​10.​
1080/​10826​068.​2017.​13202​91.

	22.	 Pittard J, Camakaris H, Yang J. The TyrR regulon. Mol Microbiol. 
2005;55:16–26. https://​doi.​org/​10.​1111/j.​1365-​2958.​2004.​04385.x.

	23.	 Lütke-Eversloh T, Stephanopoulos G. Feedback inhibition of chorismate 
mutase/prephenate dehydrogenase (TyrA) of Escherichia coli: generation 
and characterization of tyrosine-insensitive mutants. Appl Environ Micro-
biol. 2005;71:7224–8. https://​doi.​org/​10.​1128/​AEM.​71.​11.​7224-​7228.​2005.

	24.	 Carbonell P, Jervis AJ, Robinson CJ, Yan C, Dunstan M, Swainston N, et al. 
An automated design-build-test-learn pipeline for enhanced microbial 
production of fine chemicals. Commun Biol. 2018;1:66. https://​doi.​org/​10.​
1038/​s42003-​018-​0076-9.

	25.	 Chao R, Mishra S, Si T, Zhao H. Engineering biological systems using 
automated biofoundries. Metab Eng. 2017;42:98–108. https://​doi.​org/​10.​
1016/j.​ymben.​2017.​06.​003.

	26.	 Ko SC, Cho M, Lee HJ, Woo HM. Biofoundry palette: planning-assistant 
software for liquid handler-based experimentation and operation in the 
biofoundry workflow. ACS Synth Biol. 2022. https://​doi.​org/​10.​1021/​acssy​
nbio.​2c003​90.

	27.	 Jian X, Guo X, Cai Z, Wei L, Wang L, Xing X-H, Zhang C. Single-cell 
microliter-droplet screening system (MISS Cell): an integrated platform 
for automated high-throughput microbial monoclonal cultivation and 
picking. Biotechnol Bioeng. 2022. https://​doi.​org/​10.​1002/​bit.​28300.

	28.	 Del Olmo LI, Yubero P, Gómez-Luengo Á, Nogales J, Espeso DR. Technical 
upgrade of an open-source liquid handler to support bacterial colony 
screening. Front Bioeng Biotechnol. 2023;11:1202836. https://​doi.​org/​10.​
3389/​fbioe.​2023.​12028​36.

https://doi.org/10.18419/darus-4714
https://doi.org/10.1111/j.0954-6820.1974.tb08154.x
https://doi.org/10.1038/s41467-023-40702-2
https://doi.org/10.1126/science.1147241
https://doi.org/10.1126/science.1147241
https://doi.org/10.3390/molecules23010040
https://doi.org/10.1080/15592324.2020.1827782
https://doi.org/10.1080/15592324.2020.1827782
https://doi.org/10.1016/j.cis.2022.102689
https://doi.org/10.1016/j.cis.2022.102689
https://doi.org/10.1016/j.heliyon.2022.e12105
https://doi.org/10.1016/j.colsurfa.2019.123846
https://doi.org/10.1039/C2NR33043A
https://doi.org/10.1002/adma.201905622
https://doi.org/10.1021/jacs.5b09653
https://doi.org/10.1021/jacs.5b09653
https://doi.org/10.1016/S0141-0229(99)00071-X
https://doi.org/10.1016/S0141-0229(99)00071-X
https://doi.org/10.1002/cbic.201900277
https://doi.org/10.1099/mic.0.062463-0
https://doi.org/10.1186/s12934-019-1122-0
https://doi.org/10.1186/s12934-019-1122-0
https://doi.org/10.1007/s10295-011-0973-0
https://doi.org/10.1007/s10295-011-0973-0
https://doi.org/10.1038/srep30080
https://doi.org/10.1038/srep30080
https://doi.org/10.1080/10826068.2017.1320291
https://doi.org/10.1080/10826068.2017.1320291
https://doi.org/10.1111/j.1365-2958.2004.04385.x
https://doi.org/10.1128/AEM.71.11.7224-7228.2005
https://doi.org/10.1038/s42003-018-0076-9
https://doi.org/10.1038/s42003-018-0076-9
https://doi.org/10.1016/j.ymben.2017.06.003
https://doi.org/10.1016/j.ymben.2017.06.003
https://doi.org/10.1021/acssynbio.2c00390
https://doi.org/10.1021/acssynbio.2c00390
https://doi.org/10.1002/bit.28300
https://doi.org/10.3389/fbioe.2023.1202836
https://doi.org/10.3389/fbioe.2023.1202836


Page 14 of 15Hägele et al. Microbial Cell Factories          (2025) 24:111 

	29.	 Bryant JA, Kellinger M, Longmire C, Miller R, Wright RC. AssemblyTron: 
flexible automation of DNA assembly with Opentrons OT-2 lab robots. 
Synth Biol. 2023;8: ysac032. https://​doi.​org/​10.​1093/​synbio/​ysac0​32.

	30.	 Johnson JR, D’Amore R, Thain SC, Craig T, McCue HV, Hertz-Fowler C, et al. 
GeneMill: A 21st century platform for innovation. Biochem Soc Trans. 
2016;44:681–3. https://​doi.​org/​10.​1042/​BST20​160012.

	31.	 Si T, Chao R, Min Y, Wu Y, Ren W, Zhao H. Automated multiplex genome-
scale engineering in yeast. Nat Commun. 2017;8:15187. https://​doi.​org/​
10.​1038/​ncomm​s15187.

	32.	 Krausch N, Kim JW, Barz T, Lucia S, Groß S, Huber MC, et al. High-through-
put screening of optimal process conditions using model predictive 
control. Biotechnol Bioeng. 2022;119:3584–95. https://​doi.​org/​10.​1002/​
bit.​28236.

	33.	 Radivojević T, Costello Z, Workman K, Garcia MH. A machine learning 
automated recommendation tool for synthetic biology. Nat Commun. 
2020;11:4879. https://​doi.​org/​10.​1038/​s41467-​020-​18008-4.

	34.	 Holowko MB, Frow EK, Reid JC, Rourke M, Vickers CE. Building a bio-
foundry. Synth Biol. 2021;6: ysaa026. https://​doi.​org/​10.​1093/​synbio/​
ysaa0​26.

	35.	 Carbonell P, Currin A, Dunstan M, Fellows D, Jervis A, Rattray NJW, et al. 
SYNBIOCHEM-a SynBio foundry for the biosynthesis and sustainable pro-
duction of fine and speciality chemicals. Biochem Soc Trans. 2016;44:675–
7. https://​doi.​org/​10.​1042/​BST20​160009.

	36.	 Narayanan B, Weilandt D, Masid M, Miskovic L, Hatzimanikatis V. Rational 
strain design with minimal phenotype perturbation. Nat Commun. 
2024;15:723. https://​doi.​org/​10.​1038/​s41467-​024-​44831-0.

	37.	 Wang F, Cai N, Leng Y, Wu C, Wang Y, Tian S, et al. Metabolic engineering 
of Corynebacterium glutamicum for the high-level production of l-valine 
under aerobic conditions. ACS Synth Biol. 2024;13:2861–72. https://​doi.​
org/​10.​1021/​acssy​nbio.​4c002​78.

	38.	 Ziegler M, Hägele L, Gäbele T, Takors R. CRISPRi enables fast growth 
followed by stable aerobic pyruvate formation in Escherichia coli without 
auxotrophy. Eng Life Sci. 2022;22:70–84. https://​doi.​org/​10.​1002/​elsc.​
20210​0021.

	39.	 Kang DH, Ko SC, Heo YB, Lee HJ, Woo HM. RoboMoClo: a robotics-assisted 
modular cloning framework for multiple gene assembly in biofoundry. 
ACS Synth Biol. 2022;11:1336–48. https://​doi.​org/​10.​1021/​acssy​nbio.​
1c006​28.

	40.	 Xu P, Rizzoni EA, Sul S-Y, Stephanopoulos G. Improving metabolic 
pathway efficiency by statistical model-based multivariate regulatory 
metabolic engineering. ACS Synth Biol. 2017;6:148–58. https://​doi.​org/​10.​
1021/​acssy​nbio.​6b001​87.

	41.	 Gilman J, Walls L, Bandiera L, Menolascina F. Statistical design of experi-
ments for synthetic biology. ACS Synth Biol. 2021;10:1–18. https://​doi.​
org/​10.​1021/​acssy​nbio.​0c003​85.

	42.	 Helleckes LM, Küsters K, Wagner C, Hamel R, Saborowski R, Marienhagen 
J, et al. High-throughput screening of catalytically active inclusion bodies 
using laboratory automation and Bayesian optimization. Microb Cell Fact. 
2024;23:67. https://​doi.​org/​10.​1186/​s12934-​024-​02319-y.

	43.	 Dudley QM, Anderson KC, Jewett MC. Cell-free mixing of Escherichia coli 
crude extracts to prototype and rationally engineer high-titer meva-
lonate synthesis. ACS Synth Biol. 2016;5:1578–88. https://​doi.​org/​10.​1021/​
acssy​nbio.​6b001​54.

	44.	 Karim AS, Dudley QM, Juminaga A, Yuan Y, Crowe SA, Heggestad JT, et al. 
In vitro prototyping and rapid optimization of biosynthetic enzymes 
for cell design. Nat Chem Biol. 2020;16:912–9. https://​doi.​org/​10.​1038/​
s41589-​020-​0559-0.

	45.	 Fan L, Sun S, Zhang Z, Qin Y, Jensen PR, You C. Green method of syn-
thesizing l -malate from d -glucose via CO 2 fixation using an ATP-free 
in vitro synthetic enzymatic biosystem. Green Chem. 2024. https://​doi.​
org/​10.​1039/​D4GC0​1799D.

	46.	 Feng J, Jin R, Cheng S, Li H, Wang X, Chen K. Establishing an artificial 
pathway for the biosynthesis of octopamine and synephrine. ACS Synth 
Biol. 2024;13:1762–72. https://​doi.​org/​10.​1021/​acssy​nbio.​4c000​82.

	47.	 Hodgman CE, Jewett MC. Cell-free synthetic biology: thinking outside the 
cell. Metab Eng. 2012;14:261–9. https://​doi.​org/​10.​1016/j.​ymben.​2011.​09.​
002.

	48.	 Job Zhang Y-HP, Zhu Z, You C, Zhang L, Liu K. In Vitro BioTransforma-
tion (ivBT): definitions, opportunities, and challenges. Synth Biol Eng. 
2023;1:1–37. https://​doi.​org/​10.​35534/​sbe.​2023.​10013.

	49.	 Dudley QM, Karim AS, Jewett MC. Cell-free metabolic engineering: bio-
manufacturing beyond the cell. Biotechnol J. 2015;10:69–82. https://​doi.​
org/​10.​1002/​biot.​20140​0330.

	50.	 Lai H-E, Moore S, Polizzi K, Freemont P. EcoFlex: a multifunctional MoClo 
Kit for E. coli synthetic biology. Methods Mol Biol. 2018;1772:429–44. 
https://​doi.​org/​10.​1007/​978-1-​4939-​7795-6_​25.

	51.	 Mutalik VK, Guimaraes JC, Cambray G, Lam C, Christoffersen MJ, Mai Q-A, 
et al. Precise and reliable gene expression via standard transcription and 
translation initiation elements. Nat Methods. 2013;10:354–60. https://​doi.​
org/​10.​1038/​nmeth.​2404.

	52.	 Zelcbuch L, Antonovsky N, Bar-Even A, Levin-Karp A, Barenholz U, Dayagi 
M, et al. Spanning high-dimensional expression space using ribosome-
binding site combinatorics. Nucleic Acids Res. 2013;41: e98. https://​doi.​
org/​10.​1093/​nar/​gkt151.

	53.	 Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome 
binding sites to control protein expression. Nat Biotechnol. 2009;27:946–
50. https://​doi.​org/​10.​1038/​nbt.​1568.

	54.	 Seo SW, Yang J-S, Kim I, Yang J, Min BE, Kim S, Jung GY. Predictive design 
of mRNA translation initiation region to control prokaryotic translation 
efficiency. Metab Eng. 2013;15:67–74. https://​doi.​org/​10.​1016/j.​ymben.​
2012.​10.​006.

	55.	 Na D, Lee D. RBSDesigner: software for designing synthetic ribosome 
binding sites that yields a desired level of protein expression. Bioinfor-
matics. 2010;26:2633–4. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btq458.

	56.	 Looman AC, Bodlaender J, de Gruyter M, Vogelaar A, van Knippenberg 
PH. Secondary structure as primary determinant of the efficiency of ribo-
somal binding sites in Escherichia coli. Nucleic Acids Res. 1986;14:5481–
97. https://​doi.​org/​10.​1093/​nar/​14.​13.​5481.

	57.	 Zhang M, Holowko MB, Hayman Zumpe H, Ong CS. Machine learning 
guided batched design of a bacterial ribosome binding site. ACS Synth 
Biol. 2022;11:2314–26. https://​doi.​org/​10.​1021/​acssy​nbio.​2c000​15.

	58.	 Bonde MT, Pedersen M, Klausen MS, Jensen SI, Wulff T, Harrison S, et al. 
Predictable tuning of protein expression in bacteria. Nat Methods. 
2016;13:233–6. https://​doi.​org/​10.​1038/​nmeth.​3727.

	59.	 Jervis AJ, Carbonell P, Vinaixa M, Dunstan MS, Hollywood KA, Robinson CJ, 
et al. Machine learning of designed translational control allows predictive 
pathway optimization in Escherichia coli. ACS Synth Biol. 2019;8:127–36. 
https://​doi.​org/​10.​1021/​acssy​nbio.​8b003​98.

	60.	 Zhang Y, Chen H, Zhang Y, Yin H, Zhou C, Wang Y. Direct RBS engi-
neering of the biosynthetic gene cluster for efficient productivity of 
violaceins in E. coli. Microb Cell Fact. 2021;20:38. https://​doi.​org/​10.​1186/​
s12934-​021-​01518-1.

	61.	 Kutmon M, van Iersel MP, Bohler A, Kelder T, Nunes N, Pico AR, Evelo CT. 
PathVisio 3: an extendable pathway analysis toolbox. PLoS Comput Biol. 
2015;11: e1004085. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10040​85.

	62.	 Hanahan D. Studies on transformation of Escherichia coli with plasmids. 
J Mol Biol. 1983;166:557–80. https://​doi.​org/​10.​1016/​S0022-​2836(83)​
80284-8.

	63.	 Gottlieb K, Albermann C, Sprenger GA. Improvement of l-phenylalanine 
production from glycerol by recombinant Escherichia coli strains: the role 
of extra copies of glpK, glpX, and tktA genes. Microb Cell Fact. 2014;13:96. 
https://​doi.​org/​10.​1186/​s12934-​014-​0096-1.

	64.	 Guitart Font E, Sprenger GA. Opening a novel biosynthetic pathway 
to dihydroxyacetone and glycerol in Escherichia coli mutants through 
expression of a gene variant (fsaAA129S) for fructose 6-phosphate aldo-
lase. Int J Mol Sci. 2020. https://​doi.​org/​10.​3390/​ijms2​12496​25.

	65.	 Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the 
Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Micro-
biol. 2015;81:2506–14. https://​doi.​org/​10.​1128/​AEM.​04023-​14.

	66.	 Hägele L, Pfleger BF, Takors R. Getting the right clones in an automated 
manner: an alternative to sophisticated colony-picking robotics. Bioengi-
neering. 2024;11:892. https://​doi.​org/​10.​3390/​bioen​ginee​ring1​10908​92.

	67.	 Lütke-Eversloh T, Stephanopoulos G. l-tyrosine production by deregu-
lated strains of Escherichia coli. Appl Microbiol Biotechnol. 2007;75:103–
10. https://​doi.​org/​10.​1007/​s00253-​006-​0792-9.

	68.	 Juminaga D, Baidoo EEK, Redding-Johanson AM, Batth TS, Burd H, 
Mukhopadhyay A, et al. Modular engineering of l-tyrosine production in 
Escherichia coli. Appl Environ Microbiol. 2012;78:89–98. https://​doi.​org/​10.​
1128/​AEM.​06017-​11.

https://doi.org/10.1093/synbio/ysac032
https://doi.org/10.1042/BST20160012
https://doi.org/10.1038/ncomms15187
https://doi.org/10.1038/ncomms15187
https://doi.org/10.1002/bit.28236
https://doi.org/10.1002/bit.28236
https://doi.org/10.1038/s41467-020-18008-4
https://doi.org/10.1093/synbio/ysaa026
https://doi.org/10.1093/synbio/ysaa026
https://doi.org/10.1042/BST20160009
https://doi.org/10.1038/s41467-024-44831-0
https://doi.org/10.1021/acssynbio.4c00278
https://doi.org/10.1021/acssynbio.4c00278
https://doi.org/10.1002/elsc.202100021
https://doi.org/10.1002/elsc.202100021
https://doi.org/10.1021/acssynbio.1c00628
https://doi.org/10.1021/acssynbio.1c00628
https://doi.org/10.1021/acssynbio.6b00187
https://doi.org/10.1021/acssynbio.6b00187
https://doi.org/10.1021/acssynbio.0c00385
https://doi.org/10.1021/acssynbio.0c00385
https://doi.org/10.1186/s12934-024-02319-y
https://doi.org/10.1021/acssynbio.6b00154
https://doi.org/10.1021/acssynbio.6b00154
https://doi.org/10.1038/s41589-020-0559-0
https://doi.org/10.1038/s41589-020-0559-0
https://doi.org/10.1039/D4GC01799D
https://doi.org/10.1039/D4GC01799D
https://doi.org/10.1021/acssynbio.4c00082
https://doi.org/10.1016/j.ymben.2011.09.002
https://doi.org/10.1016/j.ymben.2011.09.002
https://doi.org/10.35534/sbe.2023.10013
https://doi.org/10.1002/biot.201400330
https://doi.org/10.1002/biot.201400330
https://doi.org/10.1007/978-1-4939-7795-6_25
https://doi.org/10.1038/nmeth.2404
https://doi.org/10.1038/nmeth.2404
https://doi.org/10.1093/nar/gkt151
https://doi.org/10.1093/nar/gkt151
https://doi.org/10.1038/nbt.1568
https://doi.org/10.1016/j.ymben.2012.10.006
https://doi.org/10.1016/j.ymben.2012.10.006
https://doi.org/10.1093/bioinformatics/btq458
https://doi.org/10.1093/nar/14.13.5481
https://doi.org/10.1021/acssynbio.2c00015
https://doi.org/10.1038/nmeth.3727
https://doi.org/10.1021/acssynbio.8b00398
https://doi.org/10.1186/s12934-021-01518-1
https://doi.org/10.1186/s12934-021-01518-1
https://doi.org/10.1371/journal.pcbi.1004085
https://doi.org/10.1016/S0022-2836(83)80284-8
https://doi.org/10.1016/S0022-2836(83)80284-8
https://doi.org/10.1186/s12934-014-0096-1
https://doi.org/10.3390/ijms21249625
https://doi.org/10.1128/AEM.04023-14
https://doi.org/10.3390/bioengineering11090892
https://doi.org/10.1007/s00253-006-0792-9
https://doi.org/10.1128/AEM.06017-11
https://doi.org/10.1128/AEM.06017-11


Page 15 of 15Hägele et al. Microbial Cell Factories          (2025) 24:111 	

	69.	 Kim SC, Min BE, Hwang HG, Seo SW, Jung GY. Pathway optimization by 
re-design of untranslated regions for l-tyrosine production in Escherichia 
coli. Sci Rep. 2015;5:13853. https://​doi.​org/​10.​1038/​srep1​3853.

	70.	 Nava AA, Fear AL, Lee N, Mellinger P, Lan G, McCauley J, et al. Automated 
platform for the plasmid construction process. ACS Synth Biol. 2023. 
https://​doi.​org/​10.​1021/​acssy​nbio.​3c002​92.

	71.	 Kuo S-T, Jahn R-L, Cheng Y-J, Chen Y-L, Lee Y-J, Hollfelder F, et al. Global 
fitness landscapes of the Shine-Dalgarno sequence. Genome Res. 
2020;30:711–23. https://​doi.​org/​10.​1101/​gr.​260182.​119.

	72.	 Carmona SB, Moreno F, Bolívar F, Gosset G, Escalante A. Inactivation of the 
PTS as a strategy to engineer the production of aromatic metabolites in 
Escherichia coli. J Mol Microbiol Biotechnol. 2015;25:195–208. https://​doi.​
org/​10.​1159/​00038​0854.

	73.	 Chandran SS, Yi J, Draths KM, von Daeniken R, Weber W, Frost JW. 
Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. 
Biotechnol Prog. 2003;19:808–14. https://​doi.​org/​10.​1021/​bp025​769p.

	74.	 Krämer M, Bongaerts J, Bovenberg R, Kremer S, Müller U, Orf S, et al. 
Metabolic engineering for microbial production of shikimic acid. Metab 
Eng. 2003;5:277–83. https://​doi.​org/​10.​1016/j.​ymben.​2003.​09.​001.

	75.	 Karim AS, Jewett MC. A cell-free framework for rapid biosynthetic 
pathway prototyping and enzyme discovery. Metab Eng. 2016;36:116–26. 
https://​doi.​org/​10.​1016/j.​ymben.​2016.​03.​002.

	76.	 Nielsen J, Keasling JD. Engineering cellular metabolism. Cell. 
2016;164:1185–97. https://​doi.​org/​10.​1016/j.​cell.​2016.​02.​004.

	77.	 Donzella S, Colacicco A, Nespoli L, Contente ML. Mimicking natural 
metabolisms: cell-free flow preparation of dopamine. ChemBioChem. 
2022;23: e202200462. https://​doi.​org/​10.​1002/​cbic.​20220​0462.

	78.	 van Lent P, Schmitz J, Abeel T. Simulated design-build-test-learn cycles 
for consistent comparison of machine learning methods in metabolic 
engineering. ACS Synth Biol. 2023;12:2588–99. https://​doi.​org/​10.​1021/​
acssy​nbio.​3c001​86.

	79.	 Petersen SD, Levassor L, Pedersen CM, Madsen J, Hansen LG, Zhang J, 
et al. teemi: an open-source literate programming approach for iterative 
design-build-test-learn cycles in bioengineering. PLoS Comput Biol. 
2024;20: e1011929. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10119​29.

	80.	 Newbury SF, Smith NH, Higgins CF. Differential mRNA stability con-
trols relative gene expression within a polycistronic operon. Cell. 
1987;51:1131–43. https://​doi.​org/​10.​1016/​0092-​8674(87)​90599-X.

	81.	 Levin-Karp A, Barenholz U, Bareia T, Dayagi M, Zelcbuch L, Antonovsky N, 
et al. Quantifying translational coupling in E. coli synthetic operons using 
RBS modulation and fluorescent reporters. ACS Synth Biol. 2013;2:327–36. 
https://​doi.​org/​10.​1021/​sb400​002n.

	82.	 Zhang H, Lyu Z, Fan Y, Evans CR, Barber KW, Banerjee K, et al. Metabolic 
stress promotes stop-codon readthrough and phenotypic heterogeneity. 
Proc Natl Acad Sci USA. 2020;117:22167–72. https://​doi.​org/​10.​1073/​pnas.​
20135​43117.

	83.	 Höllerer S, Papaxanthos L, Gumpinger AC, Fischer K, Beisel C, Borgwardt 
K, et al. Large-scale DNA-based phenotypic recording and deep learning 
enable highly accurate sequence-function mapping. Nat Commun. 
2020;11:3551. https://​doi.​org/​10.​1038/​s41467-​020-​17222-4.

	84.	 Tian T, Salis HM. A predictive biophysical model of translational coupling 
to coordinate and control protein expression in bacterial operons. 
Nucleic Acids Res. 2015;43:7137–51. https://​doi.​org/​10.​1093/​nar/​gkv635.

	85.	 Løvdok L, Bentele K, Vladimirov N, Müller A, Pop FS, Lebiedz D, et al. Role 
of translational coupling in robustness of bacterial chemotaxis pathway. 
PLoS Biol. 2009;7: e1000171. https://​doi.​org/​10.​1371/​journ​al.​pbio.​10001​
71.

	86.	 Schümperli D, McKenney K, Sobieski DA, Rosenberg M. Translational 
coupling at an intercistronic boundary of the Escherichia coli galactose 
operon. Cell. 1982;30:865–71. https://​doi.​org/​10.​1016/​0092-​8674(82)​
90291-4.

	87.	 Brion P, Westhof E. Hierarchy and dynamics of RNA folding. Annu Rev 
Biophys Biomol Struct. 1997;26:113–37. https://​doi.​org/​10.​1146/​annur​ev.​
bioph​ys.​26.1.​113.

	88.	 Duval M, Korepanov A, Fuchsbauer O, Fechter P, Haller A, Fabbretti A, et al. 
Escherichia coli ribosomal protein S1 unfolds structured mRNAs onto the 
ribosome for active translation initiation. PLoS Biol. 2013;11: e1001731. 
https://​doi.​org/​10.​1371/​journ​al.​pbio.​10017​31.

	89.	 Tenhaef N, Stella R, Frunzke J, Noack S. Automated rational strain 
construction based on high-throughput conjugation. ACS Synth Biol. 
2021;10:589–99. https://​doi.​org/​10.​1021/​acssy​nbio.​0c005​99.

	90.	 Chao R, Liang J, Tasan I, Si T, Ju L, Zhao H. Fully automated one-step 
synthesis of single-transcript TALEN pairs using a biological foundry. ACS 
Synth Biol. 2017;6:678–85. https://​doi.​org/​10.​1021/​acssy​nbio.​6b002​93.

	91.	 Rosch TM, Tenhaef J, Stoltmann T, Redeker T, Kösters D, Hollmann N, et al. 
AutoBioTech—a versatile biofoundry for automated strain engineering. 
ACS Synth Biol. 2024. https://​doi.​org/​10.​1021/​acssy​nbio.​4c002​98.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1038/srep13853
https://doi.org/10.1021/acssynbio.3c00292
https://doi.org/10.1101/gr.260182.119
https://doi.org/10.1159/000380854
https://doi.org/10.1159/000380854
https://doi.org/10.1021/bp025769p
https://doi.org/10.1016/j.ymben.2003.09.001
https://doi.org/10.1016/j.ymben.2016.03.002
https://doi.org/10.1016/j.cell.2016.02.004
https://doi.org/10.1002/cbic.202200462
https://doi.org/10.1021/acssynbio.3c00186
https://doi.org/10.1021/acssynbio.3c00186
https://doi.org/10.1371/journal.pcbi.1011929
https://doi.org/10.1016/0092-8674(87)90599-X
https://doi.org/10.1021/sb400002n
https://doi.org/10.1073/pnas.2013543117
https://doi.org/10.1073/pnas.2013543117
https://doi.org/10.1038/s41467-020-17222-4
https://doi.org/10.1093/nar/gkv635
https://doi.org/10.1371/journal.pbio.1000171
https://doi.org/10.1371/journal.pbio.1000171
https://doi.org/10.1016/0092-8674(82)90291-4
https://doi.org/10.1016/0092-8674(82)90291-4
https://doi.org/10.1146/annurev.biophys.26.1.113
https://doi.org/10.1146/annurev.biophys.26.1.113
https://doi.org/10.1371/journal.pbio.1001731
https://doi.org/10.1021/acssynbio.0c00599
https://doi.org/10.1021/acssynbio.6b00293
https://doi.org/10.1021/acssynbio.4c00298

	The knowledge driven DBTL cycle provides mechanistic insights while optimising dopamine production in Escherichia coli
	Abstract 
	Background 
	Results 
	Conclusion 

	Background
	Materials and methods
	Media and buffer solutions
	Bacterial strains, genes and plasmids
	Crude cell lysates system
	Construction of l-tyrosine production strains
	Construction of dopamine production strains
	Microbioreactor cultivation
	Analytical methods

	Results
	Host strain engineering leads to high l-tyrosine supply
	Concept of the knowledge driven DBTL cycle for efficient engineering of a dopamine production strain
	In vitro rational dopamine pathway design enables systematic in vivo design
	High-throughput design for RBS engineering
	Mechanistic understanding of heterologous dopamine pathway design

	Discussion
	Conclusions
	Acknowledgements
	References


